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ABSTRACT: We continue our study of the role of curvature in modifying frontal stability. In Part I, we obtained an

instability criterion valid for curved fronts and vortices in gradient wind balance (GWB):F0 5L0q0 , 0, whereL0 and q0 are
the nondimensional absolute angular momentum and Ertel potential vorticity (PV), respectively. In Part II, we investigate

this criterion in a parameter space representative of low-Richardson-number fronts and vortices in GWB. An interesting

outcome is that, for Richardson numbers near 1, anticyclonic flows increase in q0, while cyclonic flows decrease in q0, tending
to stabilize anticyclonic and destabilize cyclonic flow. Although stability is marginal or weak for anticyclonic flow (owing to

multiplication byL0), the destabilization of cyclonic flow is pronounced, andmay help to explain an observed asymmetry in the

distribution of small-scale, coherent vortices in the ocean interior. We are referring to midlatitude submesoscale and polar

mesoscale vortices that are generated by friction and/or buoyancy forcingwithin boundary layers but that are often documented

outside these layers. A comparison is made between several documented vortices and predicted stability maps, providing

support for the proposedmechanism. A simple expression, which is a root of the stability discriminantF0, explains the observed
asymmetry in the distribution of vorticity. In conclusion, the generalized criterion is consistent with theory, observations,

and recent modeling studies and demonstrates that curvature in low-stratified environments can destabilize cyclonic and

stabilize anticyclonic fronts and vortices to symmetric instability. The results may have implications for Earth system models.

SIGNIFICANCE STATEMENT: Considerable progress has beenmade by considering ocean fronts to be in geostrophic

balance. By this, we mean that fluid parcels accelerate as a result of horizontal pressure gradients and Earth’s rotation. A

good example of this is in our efforts to understand symmetric instability, a process thought to impact energy, buoyancy, and

tracer budgets in the ocean. However, we wanted to know how the physics might change if we accounted for centrifugal

forces, or curvature. It turns out that this same question had been asked and answered nearly 100 years ago. However, the

new criteria that we introduce in Part I yield (in Part II) one result that is new: in low-stratifiedwaters, curved cyclonic fronts

become strongly unstable and curved anticyclonic fronts become marginally stable. This suggests that highly curved cy-

clonic fronts and vortices are symmetrically unstable, with potential implications for the aforementioned budgets.

KEYWORDS: Eddies; Fronts; Instability; Ocean circulation; Potential vorticity; Frontogenesis/frontolysis; Vortices;

Angular momentum

1. Introduction

Symmetric instability is a vertical shear instability found

within baroclinic fronts. A unique feature of symmetric insta-

bility is that the flow can be both statically stable (i.e., gravi-

tationally stable) and inertially or centrifugally stable, and yet

is still ‘‘symmetrically unstable’’ owing to the baroclinic nature

of the flow. The instability is often triggered by internal waves

incident on the front (Mooers 1975; Li et al. 2019), resulting in

parcel motion approximately along isopycnals and inclined

relative to the horizontal. This slanted parcel motion is why the

instability has also been referred to as slant-wise convection

(Thorpe and Rotunno 1989), although it should be emphasized

that it is associated with considerably less buoyancy flux than is

typically found in gravitational instability or upright convec-

tion (Bachman et al. 2017). Also, although it occurs in baro-

clinic fronts and can be considered as a form of baroclinic

instability (Stone 1966, 1970), the underlying dynamics and

associated parcel motions are different than those found within

classical baroclinic instability (Eady 1949; Charney 1947).

The subject of symmetric instability has received consider-

able attention recently within the context of oceanic sub-

mesoscale processes and, specifically, within the context of

wind- and buoyancy-forced symmetric instability (Thomas

et al. 2008; D’Asaro et al. 2011; Thomas et al. 2013; Arobone

and Sarkar 2015; McWilliams 2016; Bachman et al. 2017;

Skyllingstad et al. 2017; Buckingham et al. 2019). Here, the

term submesoscale is used to refer to dynamics nominally en-

countered at lateral scales of 0.1–10 km and temporal scales

from hours to days. When compared with flows within the
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quasigeostrophic (QG) regime, fluid flows within the sub-

mesoscale regime are found to possess elevated gradient

Rossby numbers and reduced gradient Richardson numbers

(Thomas et al. 2008; McWilliams 2016), revealing that they are

characterized by enhanced gradients in velocity and density

and yet remain strongly influenced byEarth’s rotation.Moreover,

within boundary layers, vertical stratification is reduced to the

extent that gradient Richardson numbers within fronts can ap-

proach 1. For example, vertical stratifications ofN/f; 20–100 are

common, leading to low-gradientRichardson numbers.Here,N is

the Brunt–Väisälä, or buoyancy, frequency and f is the Coriolis

parameter. Within such low-stratified environments, symmetric

instability within fronts is expected (Stone 1966, 1970). Examples

of such boundary layers include the ocean surface, bottom, and

ice–ocean boundary layers, wherewinds, flowover topography, or

buoyancy-forced convection act to reduce N/f (Legg and

McWilliams 2001; Thomas and Taylor 2010; Thomas et al.

2013; Wenegrat et al. 2018; Naveira Garabato et al. 2019).

Building on several decades of research, Hoskins (1974)

demonstrated that the criterion for symmetric instability can

be stated in terms of the Ertel PV. Employing the model of

Ooyama [1966, their Eq. (19)], Hoskins (1974) found that in

the Northern Hemisphere, symmetric instability is possible

within a front in thermal wind balance (TWB) when q ,
0, where

q5v
a
� =b (1)

is the Ertel PV (Ertel 1942). In this expression, va 5 2V1
=3u’ f ẑ1=3u is the absolute vorticity, = 3 u is relative

vorticity, and, again, f 5 2jVj sinu is the Coriolis parameter

or vertical component of planetary vorticity at latitude u.

Moreover, b 5 2gr/ro is buoyancy, g is acceleration due to

gravity, r is density, and ro is a reference density. Multiplying

by the Coriolis parameter to eliminate the hemispheric de-

pendence, assuming stable stratification and restricting analy-

sis away from the equator, the instability criterion can be recast

in nondimensional form:

q0 5 11Ro2Ri21 , 0: (2)

Here, Ro5 z/f is the gradient Rossby number, Ri5N2/j›zuj2 is
the gradient Richardson number, N2 5 ›zb is the vertical

stratification, and ›zu is the vertical shear of alongfront velocity

u5 (0, y, 0). Also, overbars denote themean quantities. This is

the classic criterion for symmetric instability of a front in TWB

given in terms of nondimensional numbers (Hoskins 1974).

Thus, q0 serves as a discriminant for stability and instability for

flows in TWB.

Most oceanographic studies examining symmetric instability

focus on the Ertel PV as the relevant quantity. While this is

certainly appropriate for fronts in TWB, the authors are un-

aware of any observational studies that have examined the

conservation of absolute angular momentum in concert with

the Ertel PV. However, this quantity enters the expressions for

stability when centrifugal forces are present, a condition that

frequently occurs in the oceans owing to the curvature of fronts

and vortices. Thus, the objective of the first portion of our study

(Buckingham et al. 2021, hereinafter Part I) was to 1) revisit

the criterion for symmetric instability, fq , 0 (Hoskins 1974),

2) determine when the criterion applies, and 3) establish ar-

guments for use of a different criterion as necessary. We

summarize these findings below.

a. A review of the relevant criterion

By revisiting the definition of the Ertel PV, we first found

that density conservation and PV conservation were inextri-

cably linked through Ertel’s PV theorem. This reaffirmed the

notion that PV is a useful measure of stability in the ocean and

atmosphere (Hoskins 1974; Hoskins et al. 1985). Moreover,

since PV is the inner product of absolute vorticity and density

gradients, and as multiplication by f ensures the expression

remains valid in both hemispheres, one observes that the cri-

terion, fq , 0, implicitly contains information essential for

describing the stability of fronts. However, by itself, this argu-

ment does not yield a sufficient criterion for instability. That is,

the Ertel PV, q, or its nondimensional form, q0, is not the ap-

propriate stability discriminant.

We then briefly discussed the frontal models of 1) Hoskins

and Bretherton (1972) and 2) Shakespeare (2016). We noted

that the hyperbolic condition on the partial differential equa-

tion (PDE) governing steady, secondary circulation within the

front gives Hoskins’s criterion: the PDE is elliptic for fq . 0

and hyperbolic for fq , 0 (Holton 1992). We then derived a

comparable governing equation for flows in gradient wind

balance (GWB), sometimes referred to as the Sawyer–Eliassen

equation, obtaining the result that the hyperbolic condition on

the PDE is equivalent to the criterion first proposed by Solberg

(1936) and later proved sufficient by Fjortoft (1950) and

Ooyama (1966). We manipulated the expression, deriving

several forms of the criterion, a few of which we highlight below.

Because of the connection to statements made by Rayleigh

(1917) that angular momentum must always be increasing ra-

dially outward for hydrodynamic stability, one can refer to the

criterion as a generalized Rayleigh criterion, a term universally

adopted by the scientific community. That said, it can equiva-

lently be thought of as a generalized Hoskins criterion, as illus-

trated below [cf. Eq. (6)].

1) DIMENSIONAL FORMS OF THE CRITERION

The criterion, valid for inviscid baroclinic flow on the f plane,

can be written in cylindrical coordinates as follows:

F5

�
f 1

2y

r

�
(f 1 z)N2 2

�
f 1

2y

r

�2

j›
z
yj2 , 0, (3)

where y is the mean azimuthal velocity, r is the radius,

z5 (1/r)›r(ry) is the vertical component of mean relative vor-

ticity, N2 5 ›zb is vertical stratification, and j›zyj2 is the square
of the vertical shear. In the case of a zonally oriented

meandering front (Fig. 2 in Part I), the radius of the vortex r

should be replaced by a signed radius of curvature R and the

azimuthal velocity should be replaced by an alongfront ve-

locity—that is, a velocity in the direction of the gradient wind

shear. Because the baroclinic term in Eq. (3) is negative defi-

nite, it highlights that stability is reduced at ocean fronts owing

to enhanced vertical shear.
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For reference, the mean state is presumed to be in GWB

and is written as

›
r
b5

�
f 1

2y

r

�
›
z
y , (4)

where ›rb is the radial buoyancy gradient.

Two useful forms of the criterion are given below.

Noting that

q5 ( f 1 z)N2 2

�
f 1

2y

r

�
j›

z
yj2 (5)

is the Ertel PV for a flow in GWB and defining Cu5 2y/( fr),

one can rewrite the criterion as

F5 (11Cu)fq, 0 (6)

[cf. Eq. (16) in Part I]. Here, Cu is a signed, nondimensional

number that quantifies the curvature of the flow, which we

refer to as the curvature number.1 This also makes the con-

nection to the criterion of Hoskins (1974) more obvious.

DefiningL5 ry1 fr2/2 as the absolute angularmomentumof a

fluid parcel (Holton 1992), one can alternatively write the insta-

bility criterion as (Kloosterziel et al. 2007; Kloosterziel 2010)

F5 2Lq/r2 , 0 / Lq, 0. (7)

In words, the criterion states that both absolute angular mo-

mentum or the Ertel PV must be positive for stable flow. If

either but not both of these quantities is negative, instability

will occur. It is worth noting that the right-hand side of Eq. (7)

has different units than Eq. (6). In particular, Cu is related toL

as follows: L0 5 2L/( fr2)5 11Cu, where L0 is a dimensionless

form of absolute angular momentum. In summary, both

equations demonstrate that, in the limit of zero curvature, one

recovers the criterion of Hoskins (1974) valid for fronts in

TWB: fq , 0.

2) NONDIMENSIONAL FORM OF THE CRITERION

In much the same way that the criterion, fq , 0, can be re-

written in nondimensional form valid for symmetric instability

[cf. Eq. (2)], we can also write F , 0 in nondimensional form.

Assuming positive vertical stratification away from the equa-

tor, one can divide Eq. (6) by f 2N2 . 0 to obtain

F0 5L0q0 5 (11Cu)(11Ro)2 (11Cu)
2
Ri21 , 0 (8)

[cf. Eq. (17) in Part I], where again L0 5 1 1 Cu is a non-

dimensional form of absolute angular momentum and

q0 5 11Ro2 (11Cu)Ri21 5 0 (9)

is a nondimensional form of Ertel PV for flows in GWB. As

before, Ro5 z/f is the gradient Rossby number, Ri5N2/j›zuj2
is the gradient Richardson number, N2 5 ›zb is the vertical

stratification, and ›zu is the vertical shear of alongfront velocity

u5 (0, y, 0). Note, however, that y now includes both geo-

strophic and ageostrophic components. Also note that in the

limit Cu/ 0 we recover the classical nondimensional criterion

for symmetric instability given by Hoskins (1974) valid for

flows in TWB [cf. Eq. (2)].

In summary, the criterion, F , 0 (or F0 , 0), states that the

product of absolute angular momentum and Ertel PV must be

positive for hydrodynamic stability but that instability will re-

sult if either (but not both) of these quantities is negative.

Intuitively this makes sense since absolute angular momentum

L is a conserved quantity for axisymmetric flow and the Ertel

PV q is a conserved variable for inviscid, adiabatic flow. Thus,

the criterion combines both conservation principles into a

single expression. However, the sufficiency of the criterion

could not have been known from such conservation principles

without first considering arguments and efforts of scientists

(Fjortoft 1950; Ooyama 1966; Cho et al. 1993) summarized

in Part I.

b. Symmetric instability with curvature: Implications
and motivation

A notable consequence of Eq. (8) is that an asymmetry can

emerge between anticyclonic and cyclonic flow at low-gradient

Richardson numbers (Part I). Recall: for cyclonic curved flow

Cu . 0, while for anticyclonic curved flow Cu , 0. It follows

that cyclonic fronts may be less stable than anticyclonic fronts

for the same Ri and jRoj. This occurs in low stratification and

large vertical shear, since it is here that the inverse gradient

Richardson number is large and the baroclinic term in F0 is
increasingly negative [i.e., the second term in Eq. (8)].

Our interpretation is that the absolute vorticity vector is

tilted relative to its TWB state and that this tilting modifies

the range of Ro and Ri permitted for stability. Since sym-

metric instability is expected to occur at low Richardson

numbers (Stone 1966, 1970), it follows that symmetric insta-

bility is modified relative to our present-day understanding,

as it is largely based on TWB (Thomas 2005; Taylor and

Ferrari 2009, 2010; Thomas and Taylor 2010; Thomas et al.

2013).2 Thus, the main motivation for this second portion of

our study is to examine outcomes of the criterion, focusing on

the dynamical regime necessary for symmetric instability.

This is largely driven by curiosity, but it may have profound

implications for energy, buoyancy, and tracer budgets within

the ocean. As an example, this could have implications for

ocean biogeochemistry, including transport of tracers such as

Mn, Fe, CH4, H2, and
3He (Baker et al. 1995; Speer and

Marshall 1995), and enhanced tracer exchange at the base of

the ocean surface mixed layer, with corresponding implica-

tions for upper-ocean biology (Smith et al. 2016). These

subjects are not addressed here, but they nonetheless moti-

vate such a study.

1 Note that this also scales as 2 times the ratio of centripetal

to Coriolis accelerations in the radial momentum equation

(Shakespeare 2016).

2 For other dynamical regimes in which gravitational or

inertial/centrifugal instabilities principally occur, the reader is

referred to classical convection and barotropic vortex studies

(e.g., Imberger 1985; Kloosterziel and van Heijst 1991).
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c. Outline of the study

This second portion of our study is organized as follows. In

section 2, we examine application of the nondimensional crite-

rion to axisymmetric vortices in GWB, investigating interesting

outcomes of the expression in nondimensional (Ro, Ri, Cu)

parameter space.We first discuss idealized, base flows employed

in the study and then present the results of applying the criterion

[cf. Eq. (8)] to these models. In section 3, we compare these

results with several observations, focusing on small-scale, co-

herent vortices in the ocean interior. By this, we refer to mid-

latitude submesoscale vortices and polar mesoscale vortices.

Although dependent upon the base flow examined (through the

local curvature–vorticity ratio,m5Cu/Ro), we nevertheless find

our results provide a reasonable explanation for why coherent

vortices are predominantly anticyclonic (McWilliams 1985,

2016). The argument of vortex tilting given in Part I essentially

summarizes this interpretation. In section 4, we discuss these

results in light of recent studies and conclude the study in

section 5. While our study is mostly idealized, it lays the

groundwork for realistic, fine-scale modeling or observational

studies investigating these topics. The reader is referred to a

study by Shakespeare (2016) for additional discussions with re-

gard to dynamics within curved density fronts.

2. Criteria applied to curved baroclinic fronts
and vortices

Below, we consider implications of the nondimensional

generalized Rayleigh criterion,F0 , 0, applied to curved fronts

and vortices. In particular, we are interested in better under-

standing how Cu affects the range of Ro and Ri permitted for

hydrodynamic stability. We do so using idealized inviscid,

baroclinic vortices in GWB, ensuring that these base flows are

characterized by low-gradient Richardson numbers.

We have found in the limit of low Cu (not shown) that the

nondimensional Ertel PV for a flow in GWB q0 does not

smoothly approach the classical nondimensional discriminant

of Hoskins (1974). We therefore do not encourage its use as a

stability discriminant. Instead, we use q0 [cf. Eq. (9)] only to

better understand F0 5 L0q0. Note, for example, that it can

inform us about what might be possible in an extreme

case—that is, the non-axisymmetric case for which L does not

need to be conserved. In this manner, it proves informative for

understanding how L0 and q0 separately affect the solution. A

more appropriate investigation of the non-axisymmetric case

should make use of the criterion developed by Billant and

Gallaire (2005).

In summary, we consider three stability discriminants in the

work that follows: 1) q0 under TWB (as it helps to reveal when

curvature becomes important), 2) q0 under GWB (hereinafter

referred to as a ‘‘non-axisymmetric discriminant’’), and 3) F0

(the relevant stability discriminant).

a. Methods

To accomplish our main task, we simulate simple baroclinic

flows in GWB using idealized vortex models. In all cases ex-

amined, the velocity structure of the vortex is assumed sepa-

rable in the radial r and vertical z directions:

y5V(r)Z(z) , (10)

where y is the azimuthal velocity at a location (r, z) within the

vortex, V(r) denotes its horizontal structure, and Z(z) defines

the vertical structure of the vortex. Similarly, the vorticity has

form z5v(r)Z(z). In the discussion that follows, it is simplest

to define the horizontal structure of the vortex, proceeding to

the vertical structure second. We then describe how buoyancy

and relevant gradients can be estimated from the velocity field.

As we proceed, we encourage readers to bear in mind that

these results are applicable to curved fronts in GWB so long

as we confine our examination to the core of the vortex (i.e.,

r , rm, where rm is the radius of maximum velocity).

1) RANKINE VORTEX

Although we do not use the classical Rankine vortex in our

analysis,3 it helps to introduce the shielded Rankine vortex,

below. The classical Rankine model consists of a core in solid-

body rotation (i.e., Ro 5 Cu) within a radius rm and zero

vorticity outside this distance (Kundu and Cohen 2008). At a

fixed depth jzj, the velocity profile is given by

V(r)5

8>>>><
>>>>:

y
m

�
r

r
m

�
, if r# r

m

y
m

�
r

r
m

�21

, if r. r
m

, (11)

with a corresponding vorticity

v(r)5

�
z
o
, if r# r

m

0, if r. r
m

. (12)

Here, ym is the maximum velocity (defined as positive for cy-

clonic flows), again, rm is the radius of maximum velocity, and

we have defined a representative core vorticity as zo 5 2ym/rm.

(This corresponds to the maximum vorticity within all of the

vortex models examined in our study.)

2) SHIELDED RANKINE VORTEX

Barotropic and baroclinic instabilities of ocean currents of-

ten form nonisolated vortices, meaning that their circulation is

not independent of the background flow field (Lazar et al.

2013). One such example is the classical Rankine vortex pre-

sented above. However, in realistic numerical simulations, we

often see vortices that are isolated from the background flow.

Described as ‘‘shielded,’’ these vortices consist of a ring or

shield of oppositely signed vorticity surrounding a vortex core

(Gallaire and Chomaz 2003; Kloosterziel et al. 2007). A simple

model that crudely reflects this case is the shielded Rankine

vortex. This base flow is useful in modeling intense vortices or

those that may have recently been formed (Lilly and Rhines

2002; Timmermans et al. 2008).

The shielded Rankine vortex consists of a core in solid-body

rotation (i.e., Ro 5 Cu) within a radius rm, constant negative

3 Integration from r 5 0 to r 5 ‘ will demonstrate that it does

not converge, and we use such an integral in our calculations.
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vorticity outside this distance to a radius brm (b. 1), and zero

vorticity elsewhere.Mathematically, this is easiest to express in

terms of relative vorticity:

v(r)5

8><
>:

z
o
, if r# r

m

2z
o
(b2 2 1)

21
, if r

m
, r# br

m

0, if r.br
m

, (13)

where the velocity at a fixed depth jzj is related to the vorticity

v(r) at that same depth as

V(r)5
1

r

ð‘
0

rv(r)dr . (14)

All isolated or shielded vortices are susceptible to barotropic

shear instability (Flierl 1988), with narrower shields being

more unstable. To minimize sensitivity to horizontal shear, we

set b 5 4, yielding a shield with thickness 3rm. In the limit of

b / ‘, the shielded Rankine vortex is equivalent to the clas-

sical Rankine vortex.

3) ALPHA-EXPONENTIAL VORTEX

We additionally examine the stability of a family of shielded

vortices introduced by Carton and McWilliams (1989) but in-

vestigated prior to this by X. Carton and B. Legras (1988, un-

published manuscript). This is sometimes referred to as the

generalized Gaussian vortex, since the Gaussian vortex is ob-

tained as a special case, or simply the a-exponential vortex.

Hereinafter, we refer to this as the Carton–Legras–McWilliams

(CLM) vortex. Work by Gallaire and Chomaz (2003), among

many others, serves as a useful reference for this vortex class.

The CLM vortex has a velocity structure defined by4

V(r)5 y
m

�
r

r
m

�
exp[2(1/2)(r/r

m
)a] (15)

with corresponding vorticity given by

v(r)5 z
o

�
12

a

4

�
r

r
m

�a�
exp[2(1/2)(r/r

m
)a] . (16)

In these expressions, a is a ‘‘steepness parameter’’ that controls

how quickly the velocity decays away from its value at r 5 rm.

One notes that the classical Gaussian vortex (i.e., Gaussian in

vorticity) is obtained by setting a 5 2 and that typical values

for the oceanic environment are 1.5 # a # 2.5.

The Gaussian model (a 5 2) strikes a unique balance be-

tween possessing a negative vorticity shield while being only

weakly unstable to barotropic shear (Flierl 1988). It has proven

useful in depicting less intense vortices, including those at

larger scales (Chelton et al. 2011) or that may have translated

far from their origin (Paillet et al. 2002). A negative aspect of

this model, however, is that it cannot accurately depict in-

tense vortices, failing to arrive at large vorticity values typi-

cally seen in submesoscale observations, for instance. For this

reason, the Rankine vortex (or some variant thereof) or the

CLM vortex with a $ 2.5 is appropriate when modeling in-

tense vortices.

In our study, we report results for the CLM vortex with a5
1.5, 2.0, and 2.5, focusing on the vortex with a 5 2.5 when

comparing with observations (section 3). We do not provide

observational support for one vortex type over another and,

because of this, our study is inconclusive. Nevertheless, as there

is growing support for a universal form to vortices in rotating,

stratified flows (Aubert et al. 2012; Zhang et al. 2013; Mahdinia

et al. 2017), this selection of base flows appears reasonable.

4) VERTICAL STRUCTURE

In all cases, the vertical structure is modeled as Gaussian,

which is a reasonable approximation for oceanic vortices

(e.g., Riser et al. 1986; McWilliams 1985; Paillet et al. 2002;

Timmermans et al. 2008):

Z(z)5 exp[2(z2 z
o
)
2
/h2] , (17)

where h 5 H/2 is the e-folding scale of the eddy, or half the

vertical scale. We model the flow as having an inviscid

boundary at the surface (zo 5 0), although it is straightforward

to extend this to a subsurface vortex by reflecting the results

presented here about the topmost boundary. Buoyancy gra-

dients differ in top and bottom portions of the eddy, but non-

dimensional numbers remain the same.McWilliams (1985), for

example, presents only the top half of a vortex. Typical values

of H for oceanic submesoscale vortices are 100–200m.

5) ENSURING PROPER BALANCE

The vortex in GWB has a unique density structure that must

be satisfied for proper balance. There are probably several

ways to ensure balance, but the simplest is to start with the

velocity field defined above, y5V(r)Z(r) [cf. Eq. (10)]. Vertical

differentiation of y yields

›
z
y5V›

z
Z5

�
2
2z

h2

�
VZ . (18)

We can then use GWB [cf. Eq. (4)] to relate the vertical shear

to the lateral buoyancy gradient:

›
r
b
a
5

�
f 1

2y

r

�
›
z
y5

�
2
2z

h2

��
f 1

2VZ

r

�
VZ . (19)

Next, integrating radially inward,5 we obtain the buoyancy

anomaly,

b
a
5

ð0
‘

(›
r
b
a
)dr5

�
2z

h2

�ð‘
0
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4Most definitions neglect the factor of 1/2 in the velocity

(Gallaire and Chomaz 2003), because it leads to a cleaner expres-

sion for vorticity v(r). Although both are valid, we retain the scale

factor to ensure that, in the Gaussian vortex (a5 2), the vorticity is

nonzero at r 5 rm.

5 The reason for integrating radially inward is that we can specify

the lateral buoyancy gradient at themost distant part of the domain

to be zero.
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demonstrating that the buoyancy anomaly is directly re-

lated to the integral of the velocity structure. Vertical dif-

ferentiation of Eq. (20) gives the associated anomalous

stratification, N2
a 5 ›zba.

We then embed the vortex into a constant background

buoyancy gradientN2
b 5 ›zbb such that the total stratification at

any point (r, z) is given by N2 5 ›zb5N2
b 1N2

a 5 ›zbb 1 ›zba.

From velocity and buoyancy gradients, we estimate nondi-

mensional numbers (Ro, Ri, and Cu) and assess the stability of

the flow. In all cases, we use centered differences to estimate

the derivatives.

6) PRACTICAL CONSIDERATIONS

Our domain is specified as r/rm 5 [0, 10] and z/H 5 [0, 1],

with z/H 5 0 corresponding to the topmost boundary (mid-

height of an eddy for a subsurface eddy). This radial domain

size is sufficient to ensure convergence of the above integral.

The variables ym, rm, and nondimensional stratification N/f

were then varied so as to cover the desired parameter space.

We varied the nondimensional background stratification Nb/f

over the range 10–100 in an effort to populate the parameter

space at lowRichardson numbers. Also, we at first variedH but

quickly found that a large range of Ri was achieved by varying

the other parameters. We implemented these simple simula-

tions using 400 points in the vertical direction and 500 points

in the horizontal plane, fixing the Coriolis parameter as

f 5 1024 s21 for all simulations.

Rossby and curvature numbers, Ro and Cu, are not inde-

pendent. At a given location within a front, they are linearly

related. As a result, the stability curve F0 resides on a plane in

(Ro, Ri, Cu) space. In displaying our results, we have chosen to

first depict the three-dimensional stability map and then illus-

trate F0 as a function of Ro (y axis) and Ri (x axis). We also

illustrate as a separate axis (in red font) curvature numbers

corresponding to each gradient Rossby number.

In summary, we examine three stability discriminants in the

work that follows: (i) the nondimensional Ertel PV q0 under
TWB [cf. Eq. (2)] since it helps to demonstrate when curvature

effects become important, (ii) the nondimensional Ertel PV q0

under GWB [cf. Eq. (9)] since it serves as an input to F0, and
(iii) the nondimensional Rayleigh discriminant F0 (5L0q0) [cf.
Eq. (8)]. Note, that the nondimensional absolute angular mo-

mentum L0 5 11 Cu, can be readily visualized in terms of Cu

so that it is not necessary to display this quantity.

b. Results

We now present the results, first illustrating relevant dy-

namics with simple anticyclonic and cyclonic Rankine vortices

(Figs. 1–8) and, second, summarizing results over the full

nondimensional parameter space (i.e., stability maps) for all

vortices (Figs. 9–12).

1) ANTICYCLONE

We first consider the case of an anticyclonic vortex.

Figures 1–3 illustrate the result of the analysis applied to an

anticyclonic vortex. Here, the vortex is specified to have a

maximum velocity of ym520.5m s21 and radius of maximum

velocity rm 5 10 km, yielding Ro 5 Cu 521 at r/rm 5 1. The

gradient Richardson number, Ri, was chosen to be low (i.e.,

Ri ; 1.5 in the lowest region) in order to illustrate the in-

terplay between Ro and Cu in terms of its effect on PV.

Figure 4 summarizes the difference obtained when account-

ing for curvature. Under the classical instability criterion

(Hoskins 1974), we find that the flow is unstable in the vortex

core (cf. Fig. 4a). However, when accounting for the curva-

ture of the front, we observe that the flow is stable (cf.

Fig. 4b). Moreover, even in the axisymmetric discriminant

(cf. Fig. 4c), the stabilization of the vortex persists, though

this increase in stability is minimal. Nevertheless, it reveals

that stabilization of anticyclones is possible for both axi-

symmetric and non-axisymmetric vortices. This illustrates an

important finding: anticyclonic flows with large Rossby num-

bers can be stable if the curvature is large and gradient

Richardson number is low.

2) CYCLONE

We next consider the case of a cyclonic vortex. Figures 5–7

illustrate these diagnostics applied to a cyclonic vortex. In this

case, the vortex is specified to have maximum flow speed ym 5
0.5m s21 and radius of maximum velocity rm 5 3 km, giving

Ro 5 Cu 5 3.3 at r/rm 5 1. The gradient Richardson number,

Ri, is again low (e.g., Ri ’ 2 in the lowest region) in order to

illustrate the compensation of the vorticity and curvature. The

vortex core is stable, as expected for equal Ro 5 Cu but with

Ri . 1.5. Examining the region just beyond the core of the

vortex (Fig. 7), we find that as the distance exceeds r/rm5 1, the

curvature number remains large while the vorticity falls pre-

cipitously. This is the reason for the low PV near r/rm5 1.With

increased r/rm, the vertical shear reduces and the curvature

number relaxes, making PV positive once again. Realistic

vortices such as the Gaussian vortex will encounter this change

in a less abrupt manner. Nevertheless, this particular vortex

illustrates in a clear manner the potential impact of such dif-

ferences in Ro and Cu within a vortex.

The importance of the curvature can be seenmore readily by

comparing all three discriminants (Fig. 8). Here, we display q0

valid for TWB (Fig. 8a), q0 valid for GWB (Fig. 8b), and F0

valid for axisymmetric flow in GWB (Fig. 8c). As in the anti-

cyclonic case, a difference between these discriminants exists

for the cyclonic vortex. In particular, the flow is stable under

the classical criterion (Fig. 8a), but it is unstable both for non-

axisymmetric and axisymmetric cases (Figs. 8b,c). In contrast

to the anticyclonic case where curvature stabilized the flow,

here it reduces stability. This illustrates a second important

finding: cyclonic flows with curvature are more prone to insta-

bility than might be expected from the instability criterion of

Hoskins (1974). This is a robust feature of both non-

axisymmetric and axisymmetric vortices.

3) FULL NONDIMENSIONAL PARAMETER SPACE

To better understand conditions under which curvature

becomes important, we repeated the calculations presented

above for a wide range of azimuthal velocities, radii, and

stratification. In this study, we display results for the shielded

Rankine and CLM vortices (a 5 1.5, 2.0, and 2.5). It is suffi-

cient for our present purpose to study a single location within
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the vortex. The choice of location would ideally be character-

ized by vorticity of the same sign as the bulk Rossby number

Rob 5 ym/( frm). However, this choice is complicated by the

fact that unstable regions of cyclones and anticyclones slightly

differ: cyclones are unstable just outside rm whereas anticy-

clones are approximately unstable in the vortex core (see ex-

amples above). However, a compromise can bemade by noting

that symmetric and inertial instabilities often have some

breadth to them (e.g., Kloosterziel et al. 2007, their Fig. 3).

Thus, for this study we have chosen to examine the location,

(r/rm, z/H)5 (1, 21/2), allowing us to observe the stability of

both cyclonic and anticyclonic flows at the same time. In the

next subsection, we examine a ‘‘global average’’ or an aver-

age over the vortex to see whether the results found at our

local study location translate to bulk Rossby numbers char-

acterizing the whole of the front. A more thorough under-

standing requires a global stability analysis such as the ones

performed by Lahaye and Zeitlin (2015) and Mahdinia et al.

(2017), or a fully nonlinear analysis.

The stability results for the shielded Rankine vortex are

displayed in Fig. 9, while those for the CLM vortex are shown

in Figs. 10–12. In these figures, we display q0 under TWB

(panels a and b), q0 under GWB (panels c and d), and the

generalized Rayleigh discriminant F0 (panels e and f), where

negative values indicate instability. At low Ro and low Ri, we

have a reduced number of simulated anticyclones. This occurs

because, even in these weak background stratifications (N/f ;
10 to 100), anticyclones flow are associated with elevated Ri

FIG. 1. Velocity structure within an anticyclonic vortex: (a) velocity and (b) relative vorticity

and (c),(d) corresponding components of relative vorticity. This particular example corre-

sponds to a shielded Rankine vortex with maximum velocity ym 5 20.50m s21, radius of

maximum velocity rm5 10 km, and shield parameter b5 4. Here and in other figures, a contour

line with an ‘‘e’’ label indicates that the numeral preceding the e should be multiplied by 10

raised to the sign and numerals following the e.

FEBRUARY 2021 BUCK INGHAM ET AL . 323

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC



at r/rm 5 1 when compared with cyclones. This is particularly

evident for CLM vortices with a# 2.0 and the Rankine vortex.

To begin, we first examine the Ertel PV for flows in TWB (top

row) and GWB (middle row). The first quantity serves as the

stability discriminant expected for straight fronts.Weobserve an

increase in nondimensional PV (i.e., q0) for anticyclonic flows in
GWB for gradient Richardson numbers near unity (middle

row). Again, this is counter to the more classical instability cri-

terion, which predicts instability for anticyclonic flows with jRoj
close to unity (top row). Also evident is a reduction in PV for

cyclonic flow characterized by gradient Richardson numbers

near unity. This reduction in PV is not predicted by the Hoskins

(1974) expression (top row) and, for CLM vortices, occupies a

greater portion of the parameter space as the steepness pa-

rameter, a, increases in magnitude (a $ 2.0).

We now examine stability predicted by the Rayleigh

discriminant F0 (bottom row). We observe three distinct

features. First, owing to the multiplication of the non-

dimensional PV byL0 5 11Cu, the front can become unstable

for values L0 , 0. As noted above, this approximately cor-

responds to bulk Rossby numbers of Rob ; 0.5 and gradient

Rossby numbers of Ro , 20.45 to 20.7, but the latter

number depends on the vortex model examined. Second,

because 1 1 Cu . 1 for cyclonic flow, one finds that F0 . q0

and the destabilization of cyclones is always a robust char-

acteristic of both axisymmetric (bottom panel) and non-

axisymmetric (middle panel) vortices. Third, the stability of

anticyclones is reduced for the axisymmetric case when

compared with the non-axisymmetric case but nevertheless

remains positive. Of course, this may be specific to our study

FIG. 2. Baroclinic structure of an anticyclonic vortex: (a) vertical shear, (b) lateral buoyancy

gradient, (c) associated buoyancy anomaly, and (d) vertical stratification. Here, vertical

stratification is computed as the sum of a background stratification (N/f5 80, with f5 1024 s21)

and anomalous stratification associated with the vortex.
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location. To determine if this is so, we also consider other

locations within the vortex core.

4) DEPENDENCE OF RESULTS ON LOCATION

As is evident in the preceding stability maps, a linear rela-

tionship exists between curvature and vorticity. For a given

vortex model and for a given location, (r, z), within the curved

axisymmetric front, we see that the ratio of Cu to Ro is con-

stant. Moreover, this ratio, m 5 Cu/Ro, is constant with depth

and is the same for cyclones and anticyclones. This information

can be used to assess the stability of the front or vortex in other

locations within the vortex core.

Focusing on the CLM vortex model with a 5 2.5, we ex-

amined m at numerous points within the domain (Fig. 13a).

Next, we generated evenly spaced grids of Rossby and

Richardson numbers, related Cu to Ro through the curvature–

vorticity relationship, and determined stability via Eq. (8). As

the ratio, m can be large, both positively and negatively, within

the vortex shield and since we do not know to what degree

observed vortices are characterized by such shields, we avoid

analysis in this location. In essence, we are focusing on recently

generated vortices whose core velocity and vorticity structure

resembles that of the CLM vortex with a 5 2.5, or curved

fronts with these same curvature and vorticity properties.

Figure 13b depicts the stability map evaluated locally at our

study location (white circle in Fig. 13a). This graphic can be

compared with Fig. 12f, which was generated with simulated

vortices inGWB. There is no significant difference in these two

FIG. 3. Nondimensional parameters associated with an anticyclonic vortex: (a) gradient

Rossby number, (b) gradient Richardson number, (c) curvature number, and (d) nondimensional

absolute angularmomentumL0 5 2L/( fr2)5 11Cu,whereL5 ry1 fr2/2 is the absolute angular

momentum.
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stability maps except that the sample set for anticyclonic flow is

now filled at low Ri. In Fig. 13c, we display the likelihood of

observing stable states as a function of jRoj for low Richardson

numbers (Ri , 2). Note that the probability of observing a

stable anticyclone is considerably larger than the probability of

observing a stable cyclone for jRoj , 0.5—almost a factor of

2 in some instances.

To obtain an estimate ofF0 representative of the vortex as a
whole, we computed the global average, hF0i, as shown in

Fig. 13d, where we have weighted each location equally. The

contours of the marginally stable state are taken from Fig. 13b

to aid in comparison. First, the stability map for the averaged

F0 (Fig. 13d) is comparable to the locally validF0 (cf. Fig. 13b).
Slight differences are evident at 1) low Richardson number

(Ri, 2) where anticyclonic flow has reduced stability and 2) at

elevated Richardson numbers near the marginally stable state,

Cu521. Overall, however, this global average approximately

reflects the local stability map. This suggests locally valid sta-

bility maps presented earlier are indicative of the mean sta-

bility of the vortex. The histogram of stable states (Fig. 13e)

depicts a slightly different relationship. Though a larger num-

ber of stable anticyclonic occurrences when compared with

FIG. 4. Stability discriminants for an anticyclonic vortex for which negative values (white)

indicate instability: (a) classical discriminant of Hoskins (1974) valid for baroclinic flow in

thermal wind balance [TWB; cf. Eq. (2)], (b) nondimensional Ertel PV valid for baroclinic flow

in GWB (cf. Eq. (9)], and (c) generalized Rayleigh discriminant valid for baroclinic flow in

GWB [cf. Eq. (8)]. Red plus signs highlight the location used to fill the parameter space in

Figs. 9–12, below.
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stable cyclonic occurrences remain, the difference between

these two groups is reduced. This suggests that anticyclones

become less stable closer to their cores, r , rm, a finding more

consistent with inertial rather than symmetric instability.

Although we might have seen the possibility of synthetically

generating the stability maps from the outset, there is merit in

using the idealized baroclinic vortices since they provide a

useful tool for better understanding the dynamics of vortices

(Figs. 1–8). To this end, we include open-source Julia code

(https://julialang.org/) as online supplemental material to help

the reader to investigate some of these ideas.

5) MARGINAL STABILITY CURVES

Useful statements about stability of curved baroclinic fronts

can obtained by substituting m 5 Cu/Ro into the expression

F0 5 0 [cf. Eq. (8)] and solving for Ro. One finds, for example,

that Ro values corresponding to stable states (F0 . 0) reside

between two curves, which are the roots of the quadratic ex-

pression in Ro. The roots are Ro0 5 2m21 (corresponding to

the curve Cu 5 21) and Ro1 5 (1 2 Ri)/(Ri 2 m) (corre-

sponding to the hyperbolic curve that asymptotes at Ri 5 m).

We refer to Ro0 and Ro1 as barotropic and baroclinic roots,

respectively, since they highlight different aspects of the sta-

bility discriminant [Eq. (17) in Part I]. Both marginal stability

curves are highlighted in Fig. 13b, for which m ’ 2. Note that,

while both constrain gradient Rossby numbers permitted for

stable flow, the baroclinic root helps explain the dominance of

anticyclonic flow found at low Richardson numbers, Ri , m.

This root is discussed below in section 4. It is also useful to note

that m can be recast in terms of strain rate: m 5 1 2 (Ss/f )/Ro,

where Ss/f 5 ›ry/f2y/( fr)5Ro2Cu is a nondimensional

shear component of strain. We therefore expect greater

FIG. 5. As in Fig. 1, but for a cyclonic vortex. This particular example corresponds to a

shielded Rankine vortex with maximum velocity ym 5 0.50m s21, radius of maximum velocity

rm 5 3 km, and shield parameter b 5 4.

FEBRUARY 2021 BUCK INGHAM ET AL . 327

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC

https://julialang.org/


skewness when m . 1, or when Ss/f has sign opposite that

of Ro. This typically happens near r5 rm, which is consistent

with elevated curvature–vorticity ratios found at these radii (cf.

Fig. 13a). Thus, an alternative way of examining these marginal

stability curves is in terms of strain rate (T. Meunier 2020, per-

sonal communication). This, we leave for a future study.

3. Comparison with observations

It is worth considering how these results extend to curved fronts

and vortices in the observed ocean. Application of our results to

mesoscale fronts and vortices at mid- and subpolar latitudes

(Chelton et al. 2011; Frenger et al. 2015) may be limited owing to

the smallness of curvature numbers for such flows. This was found

to be the case, for example, in a study of instabilities on the edge

of a Southern Ocean eddy (Adams et al. 2017). It is notable,

however, that the generalized Rayleigh criterion F , 0 was not

used in that study. This said, Chelton et al. (2011) documented an

observed asymmetry in the distribution of long-lived vortices

(lifetimes.40 weeks) observed from satellite altimetry (Chelton

et al. 2011, Fig. 2). Thus, it is possible that symmetric instability

found within mesoscale eddies preferentially erodes cyclones when

compared with anticyclones as they are exposed to strong winter-

time cooling. This would be an interesting avenue to explore.

An obvious exception to the statement about the smallness

of the curvature number can be found at low latitudes. As

noted by Shakespeare (2016), the Coriolis parameter is re-

duced but nonzero and horizontal velocities can be consider-

able, e.g., 0.3m s21 (Holmes et al. 2014), thereby making Cu

nonnegligible. However, the increase in the meridional com-

ponent of Coriolis as one approaches the equator6 might

FIG. 6. As in Fig. 2, but for a cyclonic vortex. As before, N/f 5 80, with f 5 1024 s21.

6 The relevant nondimensional parameter isN/~f , where ~f 5 2V cosu

is themeridional component of the full Coriolis vector, 2V5 (0, ~f , f ).

For values N/~f , 5, one should consider such dynamics (Colin de

Verdière 2012).
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complicate interpretation by invalidating our starting as-

sumptions (Appendix A in Part I). This point has also been

raised by Colin de Verdière (2012), Kloosterziel et al. (2017),

and Zeitlin (2018) in the context of symmetric instability. For

these reasons, perhaps the clearest extension of our results is in

better understanding small-scale, coherent vortices, including

midlatitude submesoscale and polarmesoscale vortices, or eddies.

a. Small-scale, coherent vortices in the ocean

McWilliams (1985) provided a comprehensive description of

coherent vortices in the ocean interior. By this, we mean vor-

tices that may have formed within boundary layers and yet are

observed somewhat distant from these boundaries. Termed

submesoscale coherent vortices (SCVs), these phenomena

were differentiated from other oceanic eddies by their dy-

namics, e.g., Ro ; O(1), and also by their vertical positions

within the oceans—e.g., thermocline, subthermocline, and

meddy, where the name of the latter class of eddies refers to

its expected origin deduced from water mass properties

(McDowell and Rossby 1978). With lifetimes on the order of

months to years, the anomalies are evident as deviations in

density, velocity, salinity, or chemical composition (e.g., oxy-

gen). The breadth or diameter of the vortices ranges between

5 and 50 km, with typical core radii on the order of 10 km. A

common vertical scale is H 5 200m. Additionally, an over-

whelming majority of these vortices are anticyclonic (Bane

et al. 1989) and a distinguishing feature of the SCV’s vertical

structure is its low vertical stratification. For example, values of

10 , N/f , 65 are common (Table 1). Moreover, they have

well-mixed water properties within their interior suggesting

homogenization through turbulent mixing processes. While

sample size is limited, the following observations may provide

FIG. 7. As in Fig. 3, but for a cyclonic vortex.
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insight into how the theoretical results of this study might

translate to the observed ocean.

The Local Dynamics Experiment (LDE) eddy (Riser et al.

1986) was found within the deep thermocline. It was surveyed

by a combination of ship-based expendable bathythermographs

(XBTs) and Sound Fixing and Ranging (SOFAR) floats. The

azimuthal velocity was estimated from float trajectories, with

an average azimuthal velocity of approximately 0.25m s21, a

radius of approximately 12 km, and a vertical scale of 200m.

Taking these values as ym and rm, together with f 5 7.3 3
1025 s21 at 308N, one obtains a bulk Rossby number of Rob 5
ym/(frm) 5 20.3. In contrast, the vortex Rossby number, which

better characterizes the core of the vortex, is approximately twice

this value, Roy 5 2Rob 5 zo/f 5 20.6. Indeed, for Rankine vor-

tices the core vorticity is Roy. We have estimated a normalized

vertical stratification from the stretching term in the potential

vorticity of Riser et al. (1986), obtaining a value ofN/f5 65. This

yields a bulk Richardson number of Rib ; N2/(ym/h)
2 5 3.5,

where h5H/25 100m. These values, though bulk quantities, are

within the range of nondimensional parameters examined above.

Numerous observations of small-scale coherent vortices are

also found in the Arctic (e.g., D’Asaro 1988b; Timmermans

et al. 2008; Zhao et al. 2014). Though it should be stressed that

the baroclinic deformation radius is substantially smaller in

these regions (Nurser and Bacon 2014) such that these coher-

ent vortices are classified as ‘‘mesoscale,’’ the momentum

balance and nondimensional parameters associated with these

vortices is comparable to SCVs at midlatitudes (D’Asaro

1988b). While a number of studies have highlighted the exis-

tence of small-scale coherent vortices in the Arctic (D’Asaro

1988b; Konstianoy and Belkin 1989), one particular set of ob-

servations has resulted in unparalleled statistics.

FIG. 8. As in Fig. 4, but for a cyclonic vortex.
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Using a decade-long ice-tethered profile (ITP) record

(Krishfield et al. 2008; Toole et al. 2011), Timmermans et al.

(2008) and Zhao et al. (2014) surveyed a vast range of in-

trahalocline eddies and found that of the 127 detected

eddies, only 5 of these vortices were cyclonic (Zhao et al.

2014). Moreover, the observed vortices were described as

having a velocity structure comparable to the Rankine

vortex while being in approximate GWB. Taking one of

these vortices (ITP3-499) as a typical example, we have

mapped this vortex to our nondimensional parameter space as

follows. The maximum velocity is ym ’ 0.2m s21, radius of

maximum velocity is rm 5 3.5 km, nondimensional stratification

is N/f 5 50–80, and the vertical scale of the vortex is H 5 40m.

We have estimated these quantities from the ITP data them-

selves. These values correspond to nondimensional numbers of

Rob 520.4, Roy 520.8, and Rib 5 0.3–1.3. Again, the general

pattern of elevated Rossby numbers and low Richardson num-

bers places these observations within our regime of interest.

As a final example, we consider the SCV described by Bosse

et al. (2017). Formed from convection in the Ligurian Sea, not

unlike dynamics encountered in the Labrador Sea (Lilly and

Rhines 2002; Legg and McWilliams 2001), the low-stratified,

submesoscale vortex was characterized from hydrographic

measurements. The relevant parameters estimated for the

FIG. 9. Stabilitymaps for the baroclinic front: (a),(b) nondimensional Ertel PV q0, valid for straight fronts in TWB

[Eq. (2)], (c),(d) q0, valid for curved fronts in GWB [Eq. (9)], and (e),(f) nondimensional generalized Rayleigh

discriminantF0 (5L0q0) [Eq. (8)], valid for curved axisymmetric fronts and vortices in GWB. The color map is fixed

for all panels, all discriminants have beenmade nondimensional by dividing by f 2N2. 0, and the horizontal red line

indicates the marginal stability curve 1 1 Cu 5 0. This parameter space is valid for the shielded Rankine vortex

(b 5 4.0) at the locations (r/rm, z/H) 5 (1, 60.5) (cf. Figs. 4 and 8).
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anticyclone are ym 5 0.14m s21, rm 5 6.2 km, H 5 900m, and

N/f5 4–5 in the vortex core. Although this vertical stratification

is unusually low and challenges our neglect of the meridional

component of Coriolis (Colin de Verdière 2012; Kloosterziel

et al. 2017; Zeitlin 2018), it is nonetheless consistent with the

formation of submesoscale vortices by deep convection. The

corresponding nondimensional numbers are Rob 5 0.23, Roy 5
0.46, and Rib 5 1.65–2.6.

b. Comparison with stability diagrams

Other SCV observations exist (e.g., Lilly and Rhines 2002;

Paillet et al. 2002; Meunier et al. 2018). They are almost uni-

versally anticyclonic, characterized by elevated relative vorticity

magnitudes (jRobj . 0.1) relative to those found in QG flows,

and have horizontal scales on the order of the deformation ra-

dius.We summarize a number of these characteristics in Table 1

for the aforementioned vortices and overlay Rob and Rib on

stability maps shown in Fig. 13. For comparison with the LDE

eddy, we include a vortex found in realistic numerical simula-

tions (Gula et al. 2019) and thought to reflect dynamics associ-

ated with the LDE eddy. Though qualitative, these comparisons

prove insightful and support our proposed hypothesis.

Note that the nondimensional Rayleigh criterion, F0 , 0, de-

scribes the set of observed and simulated vortices well, as stable

regions (F0 . 0) includemost vortices (Figs. 13b,d). An exception

is the Arctic halocline vortex (Timmermans et al. 2008), which is

FIG. 10. As in Fig. 9, but valid for the CLMvortex (a5 1.5). In panels (e) and (f), note the stabilization of the flow

that occurs for Ri, 2 and Ro,21. This corresponds to the case in which absolute angular momentum and Ertel

PV are both not conserved such that F0 . 0 while L0 , 0 and q0 , 0. Most geophysical flows will not reside on this

side of the line of marginal stability Cu 5 21.
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found outside of the stable region in the global average (hF0i. 0).

This might be due, for example, to (i) uncertainty in the estimated

Richardson number or (ii) frictional effects with the ice that are

not incorporated into F0. In summary, while some scatter is ex-

pected, this qualitative agreement supports use of the generalized

Rayleigh criterion. Second, the histograms of stable Ro

(Figs. 13c,e) are maximum near the vorticity values of the

observations. Given that observed, submesoscale vortices

universally form in low-stratified environments (i.e., boundary

layers) and proceed via advection and subduction into the ocean

interior but which is also characterized by low vertical stratifi-

cation, these qualitative comparisons suggest the asymmetry in

the distribution of coherent vortices (McWilliams 1985; Bane

et al. 1989; Konstianoy and Belkin 1989; McWilliams 2016)

might originate in the boundary layer and be explained by the

vortex tilting arguments discussed in Part I. This motivates the

following hypothesis for the generation and evolution of small-

scale, coherent vortices in the ocean interior.

c. Generation and evolution of small-scale, coherent
vortices

Coherent vortices, such as SCVs and polar mesoscale

vortices, typically are generated as a result of cyclo-

geostrophic adjustment of near-boundary layer fluid. The

mechanisms thought to create such phenomena include

(i) baroclinic instability of fronts (Spall 1995; Boccaletti

et al. 2007; Timmermans et al. 2008; Wenegrat et al.

2018), (ii) frictionally induced forcing of fluid parcels

FIG. 11. As in Fig. 9, but valid for the CLM vortex (a5 2.0). This case is equivalent to the Gaussian vortex. This

model is thought to accurately reflect less intense vortices or older vortices that may have traveled far from their

point of origin (Paillet et al. 2002).
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(D’Asaro 1988a; Thomas 2008; Jiao and Dewar 2015;

Gula et al. 2016; Brannigan et al. 2017; Perfect et al.

2018), and (iii) buoyancy-induced forcing of fluid parcels

(Helfrich and Battisti 1991; D’Asaro et al. 1994; Legg and

McWilliams 2001; Hogan and Hurlburt 2006; Deremble

2016; Gordon et al. 2017; Garabato et al. 2017; Meunier

et al. 2018). Note that these boundary layers including

ocean surface, bottom, and ice–ocean boundary layers.

Because such boundary waters have reduced stratification,

N/f� 100, if fluid is trapped within the cores of the vortices,

this low stratification can persist even when the vortices

exit these boundary layers.

To conserve both absolute angular momentum and Ertel

PV, the vortex will alter its nondimensional numbers—that

is, to keep their product F0 5 L0q0 constant. Owing to

reduced stratification, the cyclonic vortex cannot appre-

ciably alter in Ri but will reduce in relative vorticity,

Ro5 z/f , while the anticyclonic vortex will remain rela-

tively unchanged. If, however, the cyclonic vortex is unable

to alter its vorticity (e.g., it is rotating too quickly), it will

lose kinetic energy in the form of dissipation due to sym-

metric instability and, eventually, Kelvin–Helmholtz in-

stability. For the unstable cyclone, this will occur quickly,

with growth rates scaling as s2 ; 2f 2F0 (section e of ap-

pendix A in Part I). For the anticyclone, being weakly

stable/unstable, this decay will require significantly more

inertial periods. The decay time scale of the cyclone under

symmetric instability can be estimated as t5 2p/s’Ti/(2F0)1/2,
where Ti 5 2p/f is the inertial period. In summary, it

is conservation of F0 in the presence of low N2 that shapes

FIG. 12. As in Fig. 9, but valid for the CLM vortex (a 5 2.5). This model is thought to most accurately describe

intense vortices, such as submesoscale coherent vortices.
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the distribution of relative vorticity at these small hori-

zontal scales.

d. Cyclonic SCVs

While submesoscale cyclones are found in the ocean inte-

rior, observations are rare and are more frequent near coasts.

A great example is the vortex recently documented by

deMarez et al. (2020).Observed in theGulf ofAden, it is believed

to have been generated through barotropic shear instability as

dense waters exited the Arabian Sea. As determined from

coincident SeaSoar and acoustic Doppler current profiler

(ADCP) measurements, it has the following characteristics:

FIG. 13. (a) Curvature–vorticity ratio m5 Cu/Ro, for the CLM vortex (a5 2.5), and valid for both cyclones and

anticyclones. The white circle highlights Cu/Ro at the location, r/rm 5 1 and z/H 5 60.5, and black dots highlight

locations entering into the global average. (b) Stability discriminantF0, valid at r/rm (cf. Fig. 12f). (c) Probability of a

stable occurrence as a function of jRoj for Ri, 2.0, for anticyclones (red) and cyclones (blue). Black circles at the

top of the plot indicate observed Rob. (d) Global average hF0i, obtained from averaging F0 at the locations (black
dots) in (a). (e) As in (c), but obtained from stable states at locations (black dots) in (a). In (b) and (d), we depict

Rob andRib of observed (red) and simulated (blue) vortices (cf. Table 1). To delineate stable and unstable regimes,

we also overlay in (b) and (d) the local (solid black) and global (solid red) marginal stability curves. Our inter-

pretation is that recently formed vortices reside on the left in (b) and (d) (i.e., low Ri) and slowly drift to the right

with increasing age (i.e., elevated Ri).

FEBRUARY 2021 BUCK INGHAM ET AL . 335

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC



ym 5 0.5m s21, rm 5 16 km, h 5 H/2 5 200m, and N/f 5 150–

200, yielding Rob 5 1.0, Roy 5 2.0, and Rib 5 3.5–6.2. We

mention this for context, noting that it has been observed im-

mediately following generation. It will therefore be interesting

to know whether this vortex is symmetrically unstable, helping

to support the mechanisms thought to shape the distribution of

relative vorticity.

4. Discussion

The ability of intense anticyclones to persist in stratified

flows has been noted for some time. Lazar et al. (2013), for

example, derived an instability criterion valid for barotropic

vortices embedded in a vertically stratified environment. One

of their main findings was that increased stratification and

turbulent eddy viscosity tended to stabilize a vortex, explaining

the stability of anticyclonic vortices with order-1 Rossby

numbers. While we, too, find the possibility of stable anticy-

clones at high Rossby numbers (although this is muted some-

what by the constraintL0 5 11Cu. 0), we suggest here that it

is the pronounced curvature in the presence of low stratifica-

tion that creates this stability. Curvature modifies the baro-

clinic structure and, in an effort to conserve F0, this in turn

modifies gradient Rossby and Richardson numbers permitted

for stability. Examined from another perspective, one finds

that the discriminant F0 at fixed gradient Rossby and

Richardson numbers increases in magnitude. Moreover, this

increase in stability occurs in the absence of viscosity, sug-

gesting stronger vortices are possible when accounting for

viscous terms.

This is consistent with a recent study by Yim et al. (2019),

who extended the work of Lazar et al. (2013) to the continu-

ously stratified case. While their focus has been on explaining

the existence of surface-intensified vortices, their results nev-

ertheless appear complementary to this study. In particular, in

the presence of absolute angular momentum conservation, we

are unable to rationalize stable anticyclones with jRoj. 0.5 (cf.

Fig. 13d). (An exception is the unique case in which bothL and

q are not conserved.) This constraint on gradient Rossby

numbers corresponds to a limit on the curvature number,

Cu . 21. For anticyclones, this implies that the centripetal

acceleration can never be larger than the magnitude of the

Coriolis acceleration divided by two, causing Gaussian vorti-

ces, for example, to have Rob . 20.5 (Mahdinia et al. 2017).7

This constraint can also be inferred from the quadratic ex-

pression used to simulate or estimate velocities for flows in

GWB (Penven et al. 2014). Thus, unless the axisymmetric

constraint is relaxed (Billant and Gallaire 2005), the existence

of anticyclones with Rossby numbers near one must invoke a

physical mechanism not present in F , 0. Viscosity is a rea-

sonable candidate.

Mahdinia et al. (2017) investigated the linear stability of

three-dimensional Gaussian vortices in rotating, stratified flow

using numerical methods. Their dynamical regime of interest
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7 This can be rationalized by noting that Cu . 21 implies

Rob ; (y2m/rm)/( f ym)5 ym/( frm).21/2.
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was centered on Rossby numbers between 60.5 and Burger

numbers8 of 0.02–2.3. In rough terms, these nondimensional

numbers correspond to bulk Richardson numbers of 0.3–3.0.

Their simulated vortices were embedded in a background

stratification of N/f 5 10. Mahdinia et al. (2017) found that of

the 130 simulated Gaussian vortices, only 4 (all cyclones) were

neutrally stable. Moreover, this occurred within a small dy-

namical regime: Rob 5 0.02–0.05 and Bu 5 0.85–0.95. Also

notable, the authors found that unstable anticyclones generally

had slower growth rates when compared with the growth rates

of cyclones, and that this slow-growth area occupied a large

portion of the parameter space. Anticyclones tended to be-

come more stable with increasing jRoj and cyclones decreased

in stability (increased growth rate) with increasing jRoj.
Though a direct comparison with our results is somewhat

limited by the use of gradient Richardson numbers rather than

bulk quantities, e.g., Burger numbers, the destabilization of

cyclones and stabilization of anticyclones with increasing jRoj
is qualitatively consistent with our results, as in some cases

increased Cu for anticyclones results in stabilization of the flow

(cf. Fig. 4c). Also, the conclusion that anticyclones should

persist for longer periods than cyclones in low-stratified waters

is consistent with the present study. A final similarity is evident

in Fig. 13d of our study. Mahdinia et al. (2017) document

weakly unstable anticyclones for nearly all Ro. Similarly, as we

began to examine an average of F0 within the whole of the

vortex [cf. section 2b(4)], we noted that hF0i can become

slightly negative for anticyclones when Ri , 2. To the extent

that the growth rate scales with F0, this is consistent with

the observation of weakly unstable anticyclones in low-

stratified waters.

The final study with which we compare our findings is a field

campaign in the vicinity of the Gulf Stream. Shcherbina et al.

(2013) documented an observational effort to characterize

upper-ocean dynamics at small horizontal scales (i.e., sub-

mesoscales) in this region. The authors employed current

measurements from two ships moving in parallel, and esti-

mated gradients in velocity between ships and in the direction

of motion, characterizing the upper-ocean velocity field in

terms of vorticity, divergence and strain rate. In examining the

joint probability distribution function of vorticity z and strain

rate a in both observations and high-resolution numerical

simulations of the upper ocean, Shcherbina et al. (2013) dem-

onstrated three interesting characteristics. In this context,

a5 (S2
n 1 S2

s )
1/2
, where Sn and Ss are the normal and shear

components of strain rate (e.g., Isern-Fontanet et al. 2004).

First, cyclonic vorticity in excess of jRoj 5 1.0 was typically

associated with large strain rates, and approached a pure shear

relationship, a5 jzj, for large Ro. This suggests large cy-

clonic flow is predominantly found within upper-ocean

fronts (i.e., where curvature is small). Second, anticyclonic

flows had limited jRoj (values smaller than 1.0 being most

common). Third, the probability of jzj � a (indicative of solid-

body rotation) was much higher for anticyclones than for cy-

clones, suggesting anticyclonic flows are preferentially found

within coherent ‘‘eddy-like structures’’ (Shcherbina et al.

2013). Last, we mention that these observationally motivated

findings are in good agreement with conclusions of Roullet and

Klein (2010), who examined the distribution of relative vor-

ticity in a surface-forced, x-periodic primitive equation model.

The above distinction between vorticity skewness created by

fronts and vorticity skewness created by coherent vortices is an

important one and is consistent with the present study. For

fronts in TWB (i.e., Cu5 0), Eq. (8) states that, for stable flow,

Ro . 21 1 Ri21 [cf. Eq. (2)]. Thus, one expects vorticity

skewness to result from elevated cyclonic flow and bounded

anticyclonic flow. For fronts in GWB (i.e., jCuj . 0), Eq. (8)

states that, for stable flow, F0 5 (1 1 Cu)(1 1 Ro) 2 (1 1
Cu)2Ri21 . 0. While this expression is not as easily manipu-

lated to reveal skewness in the distribution of Ro (see our

paragraph below), one can make heuristic progress by exam-

ining q0 andL0 separately. Recall, Eq. (9) predicts a decrease in

PV for cyclones and an increase in PV for anticyclones, relative

to the TWB case. Also, recall that 0 , L0 , 1 for inertially

stable anticyclones and L0 . 1 for inertially stable cyclones.

Therefore, F0 5 L0q0 is a muted version of q0 for anticyclones
andF0 is an amplified version of q0 for cyclones. The final result
is that anticyclones are weakly stabilized at low Ri, while cy-

clones are strongly destabilized.

Firmer statements can be made using marginal stability

curves obtained in section 2b(5). Solving for the roots ofF0 5 0

and assuming m . 1, one concludes that for low Richardson

numbers, Ri,m, all cyclonic curved fronts are unstable so long

as Ro.Ro1, where Ro1 5 (12Ri)/(Ri2 m) has been labeled

the ‘‘baroclinic’’ root. In contrast, anticyclonic flows can be

stable for these same gradient Richardson numbers. This result

is nontrivial since it is traditionally assumed that cyclonic flows

are more stable than anticyclonic flows (Hoskins 1974).9

Assuming m . 1 and substituting in Ri # 1, for example, we

find that all cyclonic fronts are unstable for Richardson num-

bers less than unity, while anticyclonic fronts and vortices can be

weakly or marginally stable for moderate magnitude Rossby

numbers, 0, jRoj, jm21j. The skewness in the distribution of

Ro can therefore be explained by this expression for low

Richardson numbers, Ri , m, and for moderately large

curvature–vorticity ratios.

In summary, the nondimensional criterion examined in this

study, F0 5 L0q0 , 0, explains both 1) the classical finding of a

dominance of cyclonic vorticity (positive vorticity skewness)

8 The Burger number is defined as the squared ratio of the deforma-

tion radius to the radial scale of the vortex, Bu5 (rd/rm)
25 [NH/(frm)]

2,

and can roughly be related to bulk Rossby and Richardson numbers

as follows: Bu5 [NH/(frm)]
2 5 [2ym/(fr

2
m)]

2
[N2/(ym/h)

2]5Ro2yRib.

9 Hoskins writes, ‘‘However, in frontal regions, the Richardson

number can be less than unity without symmetric instability being

possible’’ (Hoskins 1974, p. 481). Here, Hoskins (1974) is speaking

about cyclonic fronts in TWB and the influence of such relative

vorticity on stability. However, for these same gradient Richardson

numbers and for fronts inGWB, we find in this study that curvature

modifies this statement: no longer is the cyclonic front stable, but

rather it is the anticyclonic (curved) front that can become weakly

stable for Ri , 1.
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for straight fronts (Rudnick 2001; Shcherbina et al. 2013;

Buckingham et al. 2016) and 2) the unexplained dominance of

anticyclonic vorticity (negative vorticity skewness) for eddying

flows (Shcherbina et al. 2013; Roullet and Klein 2010). Perhaps

the reason this negative skewness in the distribution of Ro has

not been explained before is that the generalized Rayleigh

criterion needs to be expressed in terms of gradient Richardson

numbers, something that is not traditionally done. This natu-

rally follows from a ‘‘frontal’’ perspective of the criterion

presented in section 2c of Part I.

5. Summary, implications, and future steps

In this portion our study, we have investigated the out-

come of the criterion F0 5 L0q0 , 0 [cf. Eq. (8)] applied to

curved density fronts. In particular, we have focused on the

dynamical regime in which symmetric instability is expected

to occur—that is, Richardson numbers near 1 (Stone 1966,

1970). While several outcomes of the criterion could be

mentioned, the principal finding is that curvature in low-

Richardson-number flows can act to destabilize cyclonic

fronts and stabilize anticyclonic fronts to symmetric instability,

a feature that increases with increasing curvature magnitude,

jCuj. Although this possibility was noted in Part I, its existence

for realistic values of Ro and Ri (or N/f ) could not have been

predicted without first examining base flows with known

curvature–vorticity relationships, m5 Cu/Ro. This is therefore

a new and significant result.10

While discussions in this study have largely been framed in

terms of vortices, our results are additionally applicable to

curved fronts if one confines such a discussion to the region

r, rm. In reference to the meandering front schematic given in

Fig. 2 of Part I, this would suggest that the blue-shaded region

is susceptible to symmetric–inertial instabilities, while the red-

shaded region is marginally stable. Given the potential for

cyclonic curved flows to be more susceptible to symmetric in-

stability than anticyclonic flows, this implies climate-relevant

dynamics might be occurring within meandering curved fronts

that may not presently be accounted for. For example, there

may be enhanced tracer exchange (e.g., Thomas and Taylor

2010; Taylor and Ferrari 2010; Smith et al. 2016) occurring

within cyclonic meanders but not anticyclonic meanders of

fronts. This may require further study, however, since

stretching terms in F0 might adjust more readily within a

meandering front than is possible within a vortex. With respect

to a recent study of tracer exchange at the northern ‘‘wall’’ of

the Gulf Stream (Wenegrat et al. 2020), this study took place

along a portion of the front that was relatively straight; we

anticipate curvature effects are therefore minimal.

The development of parameterizations of submesoscale

processes for use within coarser-resolution ocean models is

ongoing, with the tremendous foresight that these processes

might be important for large-scale ocean dynamics, influ-

encing, for example, energy, buoyancy, and tracer budgets

(Boccaletti et al. 2007; Thomas and Taylor 2010; Fox-Kemper

et al. 2011; Smith et al. 2016; Bachman et al. 2017). In an effort

to make progress, oceanographers typically approximate these

processes as occurring at fronts that are in TWB, as mentioned

in the introduction to Part I. However, this study suggests a

valid question to ask is, ‘‘At horizontal scales for which sym-

metric instability takes place, to what extent can frontal cur-

vature be neglected?’’ Indeed, this study would suggest that for

submesoscale fronts, or those fronts at which Rossby and

Richardson numbers approach 1.0, it may be necessary to

consider frontal curvature. Moreover, even at mesoscales, this

dynamic could be relevant. The relevant nondimensional

quantity is the curvature number, Cu5 2y/(fr). In summary, if

frontal stability is modified by curvature, then curvature dy-

namics may be relevant to the aforementioned budgets. This

includes bolus transport of nutrient-rich and rare, tracer-rich

waters via coherent vortices, as well as enhanced exchange

between the deep and upper ocean, thereby affecting ocean–

atmosphere exchanges. Submesoscale-resolving ocean simu-

lations and observations are therefore necessary to explore

these hypotheses and to represent such processes within

coarser-resolution ocean models.

The assumptions made in obtaining the instability criterion

F , 0 restrict its application to inviscid flow on the f plane. In

addition, the fronts are assumed to be far enough from the

equator that the meridional component of Coriolis is negligi-

ble. Thus, to consider its application to a greater range of

frontal types and locations, for example, tropical instability

waves (Marchesiello et al. 2011; Holmes et al. 2014), it may be

necessary to generalize the governing equations and associated

instability criterion by 1) permitting displacements of fluid

parcels over larger meridional scales such that f can vary,

perhaps using spherical coordinates, and 2) including the me-

ridional component of Coriolis in the governing equations.

The overwhelming majority of submesoscale vortices ob-

served in the oceans are reported as being anticyclonic

(McWilliams 1985). This has been reiterated more recently

(McWilliams 2016), suggesting that a fundamental under-

standing of the dynamics is lacking. Here, we suggest that,

while the stability criterion examined in our study may not

completely explain the dominance of anticyclonic versus cy-

clonic curvature, it is clear that Eq. (8) applies and may help to

explain the observed asymmetry in the distribution of small-

scale, coherent vortices in the ocean interior. It is important to

stress that formation mechanisms themselves can favor vor-

ticity of a certain sign (D’Asaro 1988a; Gula et al. 2016) and

that viscous effects can be important (Lazar et al. 2013; Yim

et al. 2019). Nevertheless, given the potential for anticyclones

to persist for longer lifetimes and cyclones to dissipate more

rapidly, this study has relevance for energy, momentum, and

biogeochemical tracer fluxes in the oceans, with corresponding

challenges for representation within Earth system models.

Acknowledgments. This study was made possible by a Marie

Skłodowska-Curie Actions (MSCA) Individual Fellowship from

the European Commission (Proposal 798319). The contributions

10 The skewness in the distribution of relative vorticity could

have been predicted by examining the bound on Rossby numbers

imposed by the baroclinic root Ro1. However, since this itself de-

pends upon m, one must explore realistic base flows.

338 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC



of the authors to the published work are as follows. Author

Buckingham conceived of the idea, devised and executed the

study, and wrote the paper. Author Gula provided early

model support for these ideas. Author Carton helped to en-

sure that the mathematics were correct when applying the

criterion to balanced flows. We thank the editor and two re-

viewers for their support of the paper. Buckingham thanks

G. Crystle (UBO) for encouragement and initial inspiration,

G. Roullet (UBO) for earlier discussions about vorticity

skewness, and C. De Marez (UBO) for valuable input on an

early draft. We again acknowledge formative comments

made by S. Griffies (NOAA/GFDL) and G. Nurser (NOCS),

as well as recent conversations with the following individuals:

P. Penven (IRD), N. Lahaye (Ifremer/Inria), C. Menesguen

(Ifermer), J. Paillet (Ifremer), M-L. Timmermans (Yale), and

T. Meunier (WHOI).

REFERENCES

Adams, K. A., P. Hosegood, J. R. Taylor, J.-B. Sallée, S. Bachman,

R. Torres, and M. Stamper, 2017: Frontal circulation and

submesoscale variability during the formation of a Southern

Ocean mesoscale eddy. J. Phys. Oceanogr., 47, 1737–1753,

https://doi.org/10.1175/JPO-D-16-0266.1.

Arobone, E., and S. Sarkar, 2015: Effects of three-dimensionality

on instability and turbulence in a frontal zone. J. Fluid Mech.,

784, 252–273, https://doi.org/10.1017/jfm.2015.564.

Aubert, O., M. Le Bars, P. Le Gal, and P. S. Marcus, 2012: The

universal aspect ratio of vortices in rotating stratified flows:

Experiments and observations. J. Fluid Mech., 706, 34–45,

https://doi.org/10.1017/jfm.2012.176.

Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas,

2017: Parameterization of frontal symmetric instabilities. Part

I: Theory for resolved fronts. Ocean Modell., 109, 72–95,

https://doi.org/10.1016/j.ocemod.2016.12.003.

Baker, E. T., C. R. German, andH. Elderfield, 1995: Hydrothermal

plumes over spreading-center axes: Global distributions and

geological inferences. Seafloor Hydrothermal Systems:

Physical, Chemical, Biological, and Geological Interactions,

Geophys. Monogr., Vol. 91, Amer. Geophys. Union, 47–71,

https://doi.org/10.1029/GM091p0047.

Bane, J. M., L. M. O’Keefe, and D. R. Watts, 1989: Mesoscale

eddies and submesoscale, coherent vortices: Their existence

near and interactions with the Gulf Stream. Mesoscale/

Synoptic Coherent Structures in Geophysical Turbulence,

J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier Oceanography

Series, Vol. 50, Elsevier, 501–518, https://doi.org/10.1016/

S0422-9894(08)70204-6.

Billant, P., and F. Gallaire, 2005: Generalized Rayleigh criterion

for non-axisymmetric centrifugal instabilities. J. Fluid Mech.,

542, 365–379, https://doi.org/10.1017/S0022112005006464.

Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer

instabilities and restratification. J. Phys. Oceanogr., 37, 2228–

2250, https://doi.org/10.1175/JPO3101.1.

Bosse, A., and Coauthors, 2017: A submesoscale coherent vortex

in the Ligurian Sea: From dynamical barriers to biological

implications. J. Geophys. Res. Oceans, 122, 6196–6217, https://

doi.org/10.1002/2016JC012634.

Brannigan, L., H. Johnson, C. Lique, J. Nycander, and J. Nilsson,

2017: Generation of subsurface anticyclones at Arctic surface

fronts due to a surface stress. J. Phys. Oceanogr., 47, 2653–

2671, https://doi.org/10.1175/JPO-D-17-0022.1.

Buckingham, C. E., and Coauthors, 2016: Seasonality of sub-

mesoscale flows in the ocean surface boundary layer.

Geophys. Res. Lett., 43, 2118–2126, https://doi.org/10.1002/

2016GL068009.

——, N. Lucas, S. E. Belcher, T. Rippeth, A. Grant, J. Le

Sommer, A. O. Ajayi, and A. Naveira Garabato, 2019: The

contribution of surface and submesoscale processes to tur-

bulence in the open ocean surface boundary layer. J. Adv.

Model. Earth Syst., 11, 4066–4094, https://doi.org/10.1029/

2019MS001801.

——, J. Gula, and X. Carton, 2021: The role of curvature in

modifying frontal instabilities. Part I: Review of theory and

presentation of a nondimensional instability criterion.

J. Phys. Oceanogr., 51, 299–315, https://doi.org/10.1175/JPO-

D-19-0265.1.

Carton, X., and J. C. McWilliams, 1989: Barotropic and baroclinic

instabilities of axisymmetric vortices in a quasigeostrophic

model. Mesoscale/Synoptic Coherent Structures in Geophysical

Turbulence, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier

Oceanography Series, Vol. 50, Elsevier, 225–244, https://doi.org/

10.1016/S0422-9894(08)70188-0.

Charney, J. G., 1947: The dynamics of long waves in a baroclinic

westerly current. J. Meteor., 4, 136–162, https://doi.org/

10.1175/1520-0469(1947)004,0136:TDOLWI.2.0.CO;2.

Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global

observations of nonlinear mesoscale eddies. Prog. Oceanogr.,

91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002.
Cho, H.-R., T. G. Shepherd, and V. A. Vladimirov, 1993:

Application of the direct Liapunov method to the problem

of symmetric stability in the atmosphere. J. Atmos. Sci.,

50, 822–836, https://doi.org/10.1175/1520-0469(1993)050,0822:

AOTDLM.2.0.CO;2.

Colin de Verdière, A., 2012: The stability of short symmetric in-

ternal waves on sloping fronts: Beyond the traditional ap-

proximation. J. Phys. Oceanogr., 42, 459–475, https://doi.org/

10.1175/JPO-D-11-067.1.

D’Asaro, E. A., 1988a: Generation of submesoscale vortices: A

new mechanism. J. Geophys. Res., 93, 6685–6693, https://

doi.org/10.1029/JC093iC06p06685.

——, 1988b: Observations of small eddies in the Beaufort Sea.

J. Geophys. Res., 93, 6669–6684, https://doi.org/10.1029/

JC093iC06p06669.

——, S.Walker, andE. Baker, 1994: Structure of two hydrothermal

megaplumes. J. Geophys. Res., 99, 20 361–20 373, https://

doi.org/10.1029/94JC01846.

——, C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011:

Enhanced turbulence and energy dissipation at ocean fronts.

Science, 332, 318–322, https://doi.org/10.1126/science.1201515.

de Marez, C., X. Carton, S. Corréard, P. L’Hégaret, and

M. Morvan, 2020: Observations of a deep submesoscale cy-

clonic vortex in the Arabian Sea. Geophys. Res. Lett., 47,

e2020GL087881, https://doi.org/10.1029/2020GL087881.

Deremble, B., 2016: Convective plumes in rotating systems. J. Fluid

Mech., 799, 27–55, https://doi.org/10.1017/jfm.2016.348.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1A, 33–

52, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.

Ertel, H., 1942: Ein neuer hydrodynamischer wirbelsatz. Meteor.

Z., 59, 271–281.
Fjortoft, R., 1950: Application of integral theorems in deriving

criteria of stability for laminar flows and for the baroclinic

circular vortex. Geophys. Publ., 17 (6), 1–52.

Flierl, G. R., 1988: On the instability of geostrophic vortices. J. Fluid

Mech., 197, 349–388, https://doi.org/10.1017/S0022112088003283.

FEBRUARY 2021 BUCK INGHAM ET AL . 339

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC

https://doi.org/10.1175/JPO-D-16-0266.1
https://doi.org/10.1017/jfm.2015.564
https://doi.org/10.1017/jfm.2012.176
https://doi.org/10.1016/j.ocemod.2016.12.003
https://doi.org/10.1029/GM091p0047
https://doi.org/10.1016/S0422-9894(08)70204-6
https://doi.org/10.1016/S0422-9894(08)70204-6
https://doi.org/10.1017/S0022112005006464
https://doi.org/10.1175/JPO3101.1
https://doi.org/10.1002/2016JC012634
https://doi.org/10.1002/2016JC012634
https://doi.org/10.1175/JPO-D-17-0022.1
https://doi.org/10.1002/2016GL068009
https://doi.org/10.1002/2016GL068009
https://doi.org/10.1029/2019MS001801
https://doi.org/10.1029/2019MS001801
https://doi.org/10.1175/JPO-D-19-0265.1
https://doi.org/10.1175/JPO-D-19-0265.1
https://doi.org/10.1016/S0422-9894(08)70188-0
https://doi.org/10.1016/S0422-9894(08)70188-0
https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2
https://doi.org/10.1175/JPO-D-11-067.1
https://doi.org/10.1175/JPO-D-11-067.1
https://doi.org/10.1029/JC093iC06p06685
https://doi.org/10.1029/JC093iC06p06685
https://doi.org/10.1029/JC093iC06p06669
https://doi.org/10.1029/JC093iC06p06669
https://doi.org/10.1029/94JC01846
https://doi.org/10.1029/94JC01846
https://doi.org/10.1126/science.1201515
https://doi.org/10.1029/2020GL087881
https://doi.org/10.1017/jfm.2016.348
https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
https://doi.org/10.1017/S0022112088003283


Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed

layer eddies. III: Implementation and impact in global ocean

climate simulations. Ocean Modell., 39, 61–78, https://doi.org/

10.1016/j.ocemod.2010.09.002.

Frenger, I., M. Münnich, N. Gruber, and R. Knutti, 2015: Southern

Ocean eddy phenomenology. J. Geophys. Res. Oceans, 120,

7413–7449, https://doi.org/10.1002/2015JC011047.

Gallaire, F., and J.M. Chomaz, 2003: Three-dimensional instability

of isolated vortices. Phys. Fluids, 15, 2113–2126, https://

doi.org/10.1063/1.1580481.

Garabato, A. C. N., and Coauthors, 2017: Vigorous lateral export

of the meltwater outflow from beneath an Antarctic ice shelf.

Nature, 542, 219–222, https://doi.org/10.1038/nature20825.
Gordon, A. L., E. Shroyer, and V. S. N. Murty, 2017: An intra-

thermocline eddy and a tropical cyclone in the Bay of Bengal.

Sci. Rep., 7, 46218, https://doi.org/10.1038/srep46218.
Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016:

Topographic generation of submesoscale centrifugal instabil-

ity and energy dissipation. Nat. Commun., 7, 12811, https://

doi.org/10.1038/ncomms12811.

——, T. M. Blacic, and R. E. Todd, 2019: Submesoscale coherent

vortices in the Gulf Stream. Geophys. Res. Lett., 46, 2704–

2714, https://doi.org/10.1029/2019GL081919.

Helfrich, K. R., and T. M. Battisti, 1991: Experiments on baroclinic

vortex shedding from hydrothermal plumes. J. Geophys. Res.,

96, 12 511–12 518, https://doi.org/10.1029/90JC02643.
Hogan, P. J., and H. E. Hurlburt, 2006: Why do intrathermocline

eddies form in the Japan/East Sea? A modeling perspective.

Oceanography, 19, 134–143, https://doi.org/10.5670/oceanog.

2006.50.

Holmes, R. M., L. N. Thomas, L. Thompson, and D. Darr, 2014:

Potential vorticity dynamics of tropical instability vortices.

J. Phys. Oceanogr., 44, 995–1011, https://doi.org/10.1175/JPO-

D-13-0157.1.

Holton, J. R., 1992: An Introduction to Dynamic Meteorology.

3rd ed. Academic Press, 511 pp.

Hoskins, B. J., 1974: The role of potential vorticity in symmetric

stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480–

482, https://doi.org/10.1002/qj.49710042520.

——, and F. P. Bretherton, 1972: Atmospheric frontogenesis

models: Mathematical formulation and solution. J. Atmos.

Sci., 29, 11–37, https://doi.org/10.1175/1520-0469(1972)029,0011:

AFMMFA.2.0.CO;2.

——, M. E. McIntyre, and A. W. Robertson, 1985: On the use and

significance of isentropic potential vorticity maps. Quart.

J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/

qj.49711147002.

Imberger, J., 1985: The diurnal mixed layer.Limnol. Oceanogr., 30,

737–770, https://doi.org/10.4319/lo.1985.30.4.0737.

Isern-Fontanet, J., J. Font, E. García-Ladona, M. Emelianov,

C. Millot, and I. Taupier-Letage, 2004: Spatial structure of

anticyclonic eddies in the Algerian basin (Mediterranean Sea)

analyzed using theOkubo–Weiss parameter.Deep-SeaRes. II,

51, 3009–3028, https://doi.org/10.1016/j.dsr2.2004.09.013.
Jiao, Y., and W. K. Dewar, 2015: The energetics of centrifugal in-

stability. J. Phys. Oceanogr., 45, 1554–1573, https://doi.org/

10.1175/JPO-D-14-0064.1.

Kloosterziel, R. C., 2010: Viscous symmetric stability of circular

flows. J. Fluid Mech., 652, 171–193, https://doi.org/10.1017/

S0022112009994149.

——, and G. J. F. van Heijst, 1991: An experimental study of un-

stable barotropic vortices in a rotating fluid. J. Fluid Mech.,

223, 1–24, https://doi.org/10.1017/S0022112091001301.

——, G. F. Carnevale, and P. Orlandi, 2007: Inertial instability in

rotating and stratified fluids: Barotropic vortices. J. Fluid Mech.,

583, 379–412, https://doi.org/10.1017/S0022112007006325.
——, ——, and ——, 2017: Equatorial inertial instability with full

Coriolis force. J. Fluid Mech., 825, 69–108, https://doi.org/

10.1017/jfm.2017.377.

Konstianoy, A. G., and I.M. Belkin, 1989: A survey of observations

on intrathermocline eddies in the world ocean. Mesoscale/

Synoptic Coherent Structures in Geophysical Turbulence,

J. C. J. Nihoul and B.M. Jamart, Eds., Elsevier Oceanography

Series, Vol. 50, Elsevier, 821–841, https://doi.org/10.1016/

S0422-9894(08)70223-X.

Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans,

2008: Automated ice-tethered profilers for seawater observa-

tions under pack ice in all seasons. J. Atmos. Oceanic Technol.,

25, 2091–2105, https://doi.org/10.1175/2008JTECHO587.1.

Kundu, P. K., and I. M. Cohen, 2008: Fluid Mechanics. 4th ed.

Elsevier, 904 pp.

Lahaye, N., and V. Zeitlin, 2015: Centrifugal, barotropic and baro-

clinic instabilities of isolated ageostrophic anticyclones in the

two-layer rotating shallow water model and their nonlinear

saturation. J. Fluid Mech., 762, 5–34, https://doi.org/10.1017/

jfm.2014.631.

Lazar, A., A. Stegner, and E. Heifetz, 2013: Inertial instability of

intense stratified anticyclones. Part I. Generalized stability

criterion. J. Fluid Mech., 732, 457–484, https://doi.org/10.1017/

jfm.2013.412.

Legg, S., and J. C. McWilliams, 2001: Convective modifications

of a geostrophic eddy field. J. Phys. Oceanogr., 31, 874–891,

https://doi.org/10.1175/1520-0485(2001)031,0874:CMOAGE.
2.0.CO;2.

Li, Q., X. Mao, J. Huthnance, S. Cai, and S. Kelly, 2019: On

internal waves propagating across a geostrophic front.

J. Phys. Oceanogr., 49, 1229–1248, https://doi.org/10.1175/

JPO-D-18-0056.1.

Lilly, J. M., and P. B. Rhines, 2002: Coherent eddies in the

Labrador Sea observed from a mooring. J. Phys. Oceanogr.,

32, 585–598, https://doi.org/10.1175/1520-0485(2002)032,0585:

CEITLS.2.0.CO;2.

Mahdinia,M., P. Hassanzadeh, P. S. Marcus, and C.-H. Jiang, 2017:

Stability of three-dimensional Gaussian vortices in an un-

bounded, rotating, vertically stratified, Boussinesq flow:

Linear analysis. J. Fluid Mech., 824, 97–134, https://doi.org/

10.1017/jfm.2017.303.

Marchesiello, P., X. Capet, C. Menkes, and S. C. Kennan, 2011:

Submesoscale dynamics in tropical instability waves. Ocean

Modell., 39, 31–46, https://doi.org/10.1016/j.ocemod.2011.

04.011.

McDowell, S. E., andH. T. Rossby, 1978:Mediterranean water: An

intense mesoscale eddy off the Bahamas. Science, 202, 1085–

1087, https://doi.org/10.1126/science.202.4372.1085.

McWilliams, J. C., 1985: Submesoscale, coherent vortices in the

ocean. Rev. Geophys., 23, 165–182, https://doi.org/10.1029/

RG023i002p00165.

——, 2016: Submesoscale currents in the ocean. Proc. Roy. Soc.

London, 472A, 1–32, https://doi.org/10.1098/rspa.2016.0117.

Meunier, T., and Coauthors, 2018: Intrathermocline eddies em-

bedded within an anticyclonic vortex ring.Geophys. Res. Lett.,

45, 7624–7633, https://doi.org/10.1029/2018GL077527.

Mooers, C. N. K., 1975: Several effects of baroclinic currents

on the three-dimensional propagation of inertial-internal

waves. Geophys. Fluid Dyn., 6, 277–284, https://doi.org/

10.1080/03091927509365798.

340 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC

https://doi.org/10.1016/j.ocemod.2010.09.002
https://doi.org/10.1016/j.ocemod.2010.09.002
https://doi.org/10.1002/2015JC011047
https://doi.org/10.1063/1.1580481
https://doi.org/10.1063/1.1580481
https://doi.org/10.1038/nature20825
https://doi.org/10.1038/srep46218
https://doi.org/10.1038/ncomms12811
https://doi.org/10.1038/ncomms12811
https://doi.org/10.1029/2019GL081919
https://doi.org/10.1029/90JC02643
https://doi.org/10.5670/oceanog.2006.50
https://doi.org/10.5670/oceanog.2006.50
https://doi.org/10.1175/JPO-D-13-0157.1
https://doi.org/10.1175/JPO-D-13-0157.1
https://doi.org/10.1002/qj.49710042520
https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2
https://doi.org/10.1002/qj.49711147002
https://doi.org/10.1002/qj.49711147002
https://doi.org/10.4319/lo.1985.30.4.0737
https://doi.org/10.1016/j.dsr2.2004.09.013
https://doi.org/10.1175/JPO-D-14-0064.1
https://doi.org/10.1175/JPO-D-14-0064.1
https://doi.org/10.1017/S0022112009994149
https://doi.org/10.1017/S0022112009994149
https://doi.org/10.1017/S0022112091001301
https://doi.org/10.1017/S0022112007006325
https://doi.org/10.1017/jfm.2017.377
https://doi.org/10.1017/jfm.2017.377
https://doi.org/10.1016/S0422-9894(08)70223-X
https://doi.org/10.1016/S0422-9894(08)70223-X
https://doi.org/10.1175/2008JTECHO587.1
https://doi.org/10.1017/jfm.2014.631
https://doi.org/10.1017/jfm.2014.631
https://doi.org/10.1017/jfm.2013.412
https://doi.org/10.1017/jfm.2013.412
https://doi.org/10.1175/1520-0485(2001)031<0874:CMOAGE>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<0874:CMOAGE>2.0.CO;2
https://doi.org/10.1175/JPO-D-18-0056.1
https://doi.org/10.1175/JPO-D-18-0056.1
https://doi.org/10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2
https://doi.org/10.1017/jfm.2017.303
https://doi.org/10.1017/jfm.2017.303
https://doi.org/10.1016/j.ocemod.2011.04.011
https://doi.org/10.1016/j.ocemod.2011.04.011
https://doi.org/10.1126/science.202.4372.1085
https://doi.org/10.1029/RG023i002p00165
https://doi.org/10.1029/RG023i002p00165
https://doi.org/10.1098/rspa.2016.0117
https://doi.org/10.1029/2018GL077527
https://doi.org/10.1080/03091927509365798
https://doi.org/10.1080/03091927509365798


Naveira Garabato, A. C., and Coauthors, 2019: Rapid mixing and

exchange of deep-ocean waters in an abyssal boundary cur-

rent. Proc. Natl. Acad. Sci. USA, 116, 13 233–13 238, https://

doi.org/10.1073/pnas.1904087116.

Nurser, A. J. G., and S. Bacon, 2014: The Rossby radius in the

Arctic Ocean.Ocean Sci., 10, 967–975, https://doi.org/10.5194/

os-10-967-2014.

Ooyama, K., 1966: On the stability of the baroclinic circular vortex: A

sufficient criterion for instability. J. Atmos. Sci., 23, 43–53, https://

doi.org/10.1175/1520-0469(1966)023,0043:OTSOTB.2.0.CO;2.

Paillet, J., B. Le Cann, X. Carton, Y. Morel, and A. Serpette, 2002:

Dynamics and evolution of a northern meddy. J. Phys.

Oceanogr., 32, 55–79, https://doi.org/10.1175/1520-0485(2002)

032,0055:DAEOAN.2.0.CO;2.

Penven, P., I. Halo, S. Pous, and L. Marié, 2014: Cyclogeostrophic
balance in the Mozambique Channel. J. Geophys. Res. Oceans,

119, 1054–1067, https://doi.org/10.1002/2013JC009528.

Perfect, B., N. Kumar, and J. J. Riley, 2018: Vortex structures in the

wake of an idealized seamount in rotating, stratified flow.

Geophys. Res. Lett., 45, 9098–9105, https://doi.org/10.1029/

2018GL078703.

Rayleigh, L., 1917: On the dynamics of revolving fluids. Proc.

Roy. Soc. London, 93, 148–154, https://doi.org/10.1098/

rspa.1917.0010.

Riser, S. C., W. B. Owens, H. T. Rossby, and C. C. Ebbesmeyer,

1986: The structure, dynamics, and origin of a small-scale lens

of water in the western North Atlantic thermocline. J. Phys.

Oceanogr., 16, 572–590, https://doi.org/10.1175/1520-0485(1986)

016,0572:TSDAOO.2.0.CO;2.

Roullet, G., and P. Klein, 2010: Cyclone-anticyclone asymmetry in

geophysical turbulence. Phys. Rev. Lett., 104, 218501, https://

doi.org/10.1103/PhysRevLett.104.218501.

Rudnick, D. L., 2001: On the skewness of vorticity in the upper

ocean. Geophys. Res. Lett., 28, 2045–2048, https://doi.org/

10.1029/2000GL012265.

Shakespeare, C. J., 2016: Curved density fronts: Cyclogeostrophic

adjustment and frontogenesis. J. Phys. Oceanogr., 46, 3193–

3207, https://doi.org/10.1175/JPO-D-16-0137.1.

Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J.

Molemaker, and J. C. McWilliams, 2013: Statistics of vertical

vorticity, divergence, and strain in a developed submesoscale

turbulence field. Geophys. Res. Lett., 40, 4706–4711, https://

doi.org/10.1002/grl.50919.

Skyllingstad, E. D., J. Duncombe, and R. M. Samelson, 2017:

Baroclinic frontal instabilities and turbulent mixing in the

surface boundary layer. Part II: Forced simulations. J. Phys.

Oceanogr., 47, 2429–2454, https://doi.org/10.1175/JPO-D-16-

0179.1.

Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects

of submesoscale turbulence on ocean tracers. J. Geophys. Res.

Oceans, 121, 908–933, https://doi.org/10.1002/2015JC011089.
Solberg, H., 1936: Le mouvement d’inertie de l’atmosphere stable

et son role dans la theorie des cyclones. Sixth Assembly, Paul

Dupont, Edinburgh, Union Geodesique et Geophysique

Internationale, 66–82.

Spall, M. A., 1995: Frontogenesis, subduction, and cross-front ex-

change at upper ocean fronts. J. Geophys. Res., 100, 2543–

2557, https://doi.org/10.1029/94JC02860.

Speer, K. G., and J. Marshall, 1995: The growth of convective

plumes at seafloor hot springs. J. Mar. Res., 53, 1025–1057,

https://doi.org/10.1357/0022240953212972.

Stone, P. H., 1966: On non-geostrophic baroclinic stability.

J. Atmos. Sci., 23, 390–400, https://doi.org/10.1175/1520-

0469(1966)023,0390:ONGBS.2.0.CO;2.

——, 1970: On non-geostrophic baroclinic stability: Part II.

J. Atmos. Sci., 27, 721–726, https://doi.org/10.1175/1520-0469(1970)

027,0721:ONGBSP.2.0.CO;2.

Taylor, J. R., and R. Ferrari, 2009: On the equilibration of a

symmetrically unstable front via a secondary shear insta-

bility. J. Fluid Mech., 622, 103–113, https://doi.org/10.1017/

S0022112008005272.

——, and ——, 2010: Buoyancy and wind-driven convection at

mixed layer density fronts. J. Phys. Oceanogr., 40, 1222–1242,
https://doi.org/10.1175/2010JPO4365.1.

Thomas, L. N., 2005: Destruction of potential vorticity by winds.

J. Phys. Oceanogr., 35, 2457–2466, https://doi.org/10.1175/

JPO2830.1.

——, 2008: Formation of intrathermocline eddies at ocean fronts

by wind-driven destruction of potential vorticity.Dyn. Atmos.

Oceans, 45, 252–273, https://doi.org/10.1016/j.dynatmoce.

2008.02.002.

——, and J. R. Taylor, 2010: Reduction of the usable wind-work

on the general circulation by forced symmetric instability.

Geophys. Res. Lett., 37, L18606, https://doi.org/10.1029/

2010GL044680.

——, A. Tandon, and A. Mahadevan, 2008: Submesoscale pro-

cesses and dynamics. Ocean Modeling in an Eddying Regime,

Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

——, J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric

instability in the Gulf Stream. Deep-Sea Res. II, 91, 91–110,

https://doi.org/10.1016/j.dsr2.2013.02.025.

Thorpe, A. S., and R. Rotunno, 1989: Nonlinear aspects of sym-

metric instability. J. Atmos. Sci., 46, 1285–1299, https://doi.org/

10.1175/1520-0469(1989)046,1285:NAOSI.2.0.CO;2.

Timmermans, M.-L., J. Toole, A. Proshutinsky, R. Krishfield, and

A. Plueddemann, 2008: Eddies in the Canada Basin, Arctic

Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr.,

38, 133–145, https://doi.org/10.1175/2007JPO3782.1.

Toole, J.M.,R.A.Krishfield,M.-L. Timmermans, andA. Proshutinsky,

2011: The ice-tethered profiler: Argo of theArctic.Oceanography,

24, 126–135, https://doi.org/10.5670/oceanog.2011.64.

Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale

baroclinic instability in the bottom boundary layer. J. Phys.

Oceanogr., 48, 2571–2592, https://doi.org/10.1175/JPO-D-17-

0264.1.

——, L. N. Thomas, M. A. Sundermeyer, J. R. Taylor, E. A.

D’Asaro, J. M. Klymak, R. K. Shearman, and C.M. Lee, 2020:

Enhancedmixing across the gyre boundary at the Gulf Stream

front. Proc. Natl. Acad. Sci. USA, 117, 17 607–17 614, https://

doi.org/10.1073/pnas.2005558117.

Yim, E., A. Stegner, and P. Billant, 2019: Stability criterion for the

centrifugal instability of surface intensified anticyclones. J. Phys.

Oceanogr., 49, 827–849, https://doi.org/10.1175/JPO-D-18-0088.1.

Zeitlin, V., 2018: Symmetric instability drastically changes upon

inclusion of the full Coriolis force. Phys. Fluids, 30, 061701,

https://doi.org/10.1063/1.5031099.

Zhang, Z., Y. Zhang, W. Wang, and R. X. Huang, 2013: Universal

structure of mesoscale eddies in the ocean. Geophys. Res.

Lett., 40, 3677–3681, https://doi.org/10.1002/grl.50736.

Zhao,M.,M.-L. Timmermans, S. Cole, R. Krishfield, A. Proshutinsky,

and J. Toole, 2014: Characterizing the eddy field in the Arctic

Oceanhalocline. J.Geophys. Res.Oceans, 119, 8800–8817, https://

doi.org/10.1002/2014JC010488.

FEBRUARY 2021 BUCK INGHAM ET AL . 341

Unauthenticated | Downloaded 01/21/21 08:04 AM UTC

https://doi.org/10.1073/pnas.1904087116
https://doi.org/10.1073/pnas.1904087116
https://doi.org/10.5194/os-10-967-2014
https://doi.org/10.5194/os-10-967-2014
https://doi.org/10.1175/1520-0469(1966)023<0043:OTSOTB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1966)023<0043:OTSOTB>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<0055:DAEOAN>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<0055:DAEOAN>2.0.CO;2
https://doi.org/10.1002/2013JC009528
https://doi.org/10.1029/2018GL078703
https://doi.org/10.1029/2018GL078703
https://doi.org/10.1098/rspa.1917.0010
https://doi.org/10.1098/rspa.1917.0010
https://doi.org/10.1175/1520-0485(1986)016<0572:TSDAOO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1986)016<0572:TSDAOO>2.0.CO;2
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1029/2000GL012265
https://doi.org/10.1029/2000GL012265
https://doi.org/10.1175/JPO-D-16-0137.1
https://doi.org/10.1002/grl.50919
https://doi.org/10.1002/grl.50919
https://doi.org/10.1175/JPO-D-16-0179.1
https://doi.org/10.1175/JPO-D-16-0179.1
https://doi.org/10.1002/2015JC011089
https://doi.org/10.1029/94JC02860
https://doi.org/10.1357/0022240953212972
https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2
https://doi.org/10.1017/S0022112008005272
https://doi.org/10.1017/S0022112008005272
https://doi.org/10.1175/2010JPO4365.1
https://doi.org/10.1175/JPO2830.1
https://doi.org/10.1175/JPO2830.1
https://doi.org/10.1016/j.dynatmoce.2008.02.002
https://doi.org/10.1016/j.dynatmoce.2008.02.002
https://doi.org/10.1029/2010GL044680
https://doi.org/10.1029/2010GL044680
https://doi.org/10.1016/j.dsr2.2013.02.025
https://doi.org/10.1175/1520-0469(1989)046<1285:NAOSI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1285:NAOSI>2.0.CO;2
https://doi.org/10.1175/2007JPO3782.1
https://doi.org/10.5670/oceanog.2011.64
https://doi.org/10.1175/JPO-D-17-0264.1
https://doi.org/10.1175/JPO-D-17-0264.1
https://doi.org/10.1073/pnas.2005558117
https://doi.org/10.1073/pnas.2005558117
https://doi.org/10.1175/JPO-D-18-0088.1
https://doi.org/10.1063/1.5031099
https://doi.org/10.1002/grl.50736
https://doi.org/10.1002/2014JC010488
https://doi.org/10.1002/2014JC010488

