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ABSTRACT
We investigate numerically the evolution of a baroclinic vortex in
a two-level surface quasi-geostrophic model. The vortex is com-
posed of two circular patches of uniform buoyancy, one located at
each level. We vary the vortex radii, the magnitude of buoyancy,
and the vertical distance between the two levels. We also study
different radial profiles of buoyancy for each vortex. This article con-
siders two main situations: firstly, initially columnar vortices with
like-signed buoyancies. These vortices are contra-rotating, are lin-
early unstable and may break. Secondly, we consider initially tilted
vorticeswithopposite-signedbuoyancies,whichmayalignvertically.
Numerical experiments show that (1) identical contra-rotating vor-
tices break into hetons when initially perturbed by low azimuthal
modes; (2) unstable, vertically asymmetric, contra-rotating vortices
can stabilise nonlinearly more often than vertically symmetric ones,
and can form quasi-steady baroclinic tripoles; (3) co-rotating vor-
tices can align when the two levels are close to each other vertically,
and when the vortices are initially horizontally distant from each
other by less than three radii; (4) for initially more distant vortices,
two such vortices rotate around the plane center; and(5) in all cases,
the vortex boundaries are disturbed by Rossby waves. These results
compare favorably to earlier results with internal quasi-geostrophic
vortices. Further modelling efforts may extend the present study to
fully three-dimensional ocean dynamics.
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1. Introduction

Vortices are long-lived oceanic features, with a mostly horizontal circulation constrained
by the Earth rotation andby the density stratification (Richardson 1983,McWilliams 1991).
Vortices play a substantial role in the transfer of water masses, heat and momentum
across the oceans (Provenzale 1999, Gula et al. 2019, 2022). Insofar as the hydrostatic
and geostrophic balances mostly hold for the mesoscale oceanic vortices (i.e. vortices with
a radius of a few tens of kilometres and a turn-over period of a few days), the quasi-
geostrophic (QG)model is an appropriate framework to describe their dynamics (Reinaud
et al. 2022). Nevertheless, due to the ocean’s density stratification, more than one layer, or
vertical level, is necessary to adequately represent these vortices (Reinaud 2019).
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An often-used model for vortex dynamics is the two-layer, (internal) quasi-geostrophic
model (Flierl 1978). This model represents two superimposed slabs of homogeneous fluid,
of different densities, interacting via their density interface. In each layer, the dynamics
is governed by the evolution of the potential vorticity (Charney 1948). This two-layer
quasi-geostrophic model has been the framework of the study of baroclinic instabil-
ity of parallel flows (Phillips 1954) and of circular vortices (Flierl 1988, Carton and
McWilliams 1996, Carton et al. 2010, Sokolovskiy and Verron 2013). Baroclinically unsta-
ble vortices can evolve nonlinearly into hetons (Hogg and Stommel 1985a, 1985b, Reinaud
and Carton 2009b), contra-rotating ellipses (Carton and McWilliams 1996) or in baro-
clinic tripoles (Reinaud and Carton 2009a, Sokolovskiy and Carton 2010). Such nonlinear
evolutions are also observed in two-layer ageostrophic shallow-water flows (Baey and
Carton 2002).

In the presence of buoyancy anomalies concentrated vertically over a shallow depth, the
quasi-geostrophic model can be expressed via the evolution of buoyancy (or temperature)
anomalies, which are the singular equivalents of potential vorticity. This restriction of the
general QG model is the surface quasi-geostrophic model (SQG); it represents the advec-
tion of buoyancy anomalies at the surface and bottomof the ocean, or of a part of the ocean,
vertically (Bretherton 1966, Held et al. 1995, Smith and Bernard 2013, Lapeyre 2017).
The SQG model has been used mostly in a one-level configuration for vortex and tur-
bulence studies (Lapeyre and Klein 2006, Klein et al. 2008, Carton 2009, Tulloch and
Smith 2009, Carton et al. 2011, Harvey and Ambaum 2011, Harvey et al. 2011, Badin and
Poulin 2019). A SQG model coupled with an internal quasi-geostrophic model has also
been used for the study of coupled surface flow-internal vortex (Perrot et al. 2010, Reinaud
et al. 2016, 2017a, 2017b). The two-level SQG model was also used to calculate the linear
instability of vertically shear, parallel flows by Eady (1949).

Recently, the present authors have investigated the linear stability of a circular vortex in
a two-level, SQG model (Vic et al. 2022), comprising surface and bottom uniform buoy-
ancy anomalies. Such vortices are here referred to, as Eady vortices by analogy with the
Eady problem. The aim of the present work is to extend the linear stability study of two-
level Eady vortices to their nonlinear dynamics, that is, investigate the possible formation
of hetons (e.g. Gryanik 1983, Hogg and Stommel 1985a, 1985b), or of more complex com-
pound vortex, from these two-level vortices. For two like-signed buoyancy anomalies, one
on each surface, we assess the finite-amplitude evolution of monochromatic angular per-
turbations, and the possibility of vortex breaking, or of topological rearrangement of the
initial vortices. The structure and regularity, or lack thereof, of the final compound vortex
cannot be assessed from the linear analysis previously carried out. We also extend our pre-
vious study to parameter regimes which are not accessible to linear analysis, for the sake
of simplicity and of tractability of the analytical solutions. Finally, we study the ability of
initially tilted, two-level SQG vortices, to straighten up. This process, called vertical vortex
alignement, has previously been studied in a two-layer internal quasi-geostrophic model
(Polvani 1991). It is essential for the robustness and the durability of oceanic vortices.

This article is organised as follows: we present the SQG model equations, the initial
conditions and the numerical implementation in section 2. In Section 3, we address the
nonlinear evolution of an initially perturbed, contra-rotating Eady vortex, with like-signed
temperature anomalies at both levels. These anomalies are initially aligned vertically and
they are linearly unstable to perturbations. We assess the influence of various physical
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parameters on the nonlinear evolution of the vortices. In Section 4, we consider the case
of two circular, opposite-signed, temperature anomalies, initially horizontally offset. The
vortices of such a tilted Eady vortex are co-rotating.We study numerically the possible ver-
tical alignment of the two buoyancy patches at finite time. A discussion on the stability of
these Eady vortices is followed in Section 5. Finally, conclusions are drawn in Section 6.

2. Physical and numerical model

2.1. Model equations and initial conditions; physical parameters

2.1.1. Model equations
In the quasi-geostrophic model, the Coriolis acceleration mostly balances the horizontal
pressure gradient and the horizontal velocity is essentially non-divergent. The dynamic
pressure p∗ (total pressure minus pressure at rest) is related to a streamfunction ψ∗ via
ψ∗ = p∗/ρ0f0. The superscript ∗ indicates a dimensional variable. The Coriolis parameter
is f0 = 2� sin(λ) with � the Earth rotation rate and λ the latitude. The density ρ∗ is also
related to the streamfunction via the buoyancy b∗ = −gρ∗/ρ0 = f0∂z∗ψ∗, where ρ0 is a
reference density. Here x∗, y∗, z∗ are also dimensional space variables; typically, x∗, y∗ vary
over tens of kilometres and z∗ over hundreds of metres.

The surface quasi-geostrophic (SQG) model assumes that the potential vorticity q∗ is
zero in the fluid :

q∗ =
[
∂2

∂x∗2 + ∂2

∂y∗2 + ∂z∗
[(

f 20
N2

)
∂z∗

] ]
ψ∗ = 0, z∗ ∈ (−h∗, 0),

where N is the Brunt-Väisälä frequency, and h∗ is the total (dimensional) depth of the
fluid layer under study (thus it may be different from the total depth of the ocean). The
SQG model assumes that the potential vorticity is concentrated at the surface and at the
bottom of the fluid layer under consideration : q∗ = q1δ(z∗ = 0)+ q2δ(z∗ = −h∗) with
δ the Dirac distribution. Then, the potential vorticity conservation equation becomes an
equation for buoyancy evolution on these two surfaces (Bretherton 1966).

db∗

dt
= ∂t∗b∗ + J(ψ∗, b∗) = 0, z∗ = 0,−h∗, (1)

where b∗ = f0∂z∗ψ∗.
Assuming that the fluid domain is horizontally unbounded, the streamfunction can be

written as follows:

ψ(x∗, y∗, z∗, t∗) =
∫ ∫

A∗
k∗l∗(t

∗)φk∗l∗(z∗) exp(i[k∗x∗ + l∗y∗]) dk∗ dl∗,

where k∗, l∗ are the horizontal wavenumbers, b∗
1, b

∗
2 the Fourier transforms of the surface

and bottom buoyancies, and A∗
k∗l∗ ,φk∗l∗ the Fourier transforms of the associated stream-

functions.Assuming theBrunt-Väisälä frequency constant (N = N0), the condition of zero
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potential vorticity in the bulk of the fluid leads to

φ′′
k∗l∗(z

∗)− K∗2N2
0

f 20
φk∗l∗(z∗) = 0,

where K∗2 = k∗2 + l∗2. This leads to

φk∗l∗(z∗) = φ
(1)
k∗l∗ cosh(K

∗N0z∗/f0)+ φ
(2)
k∗l∗ cosh(K

∗N0(h∗ + z∗)/f0).

This simple formof the Fourier transformofψ provides simple relations betweenφ(1),φ(2)
and the Fourier coefficients of buoyancy at the upper and lower levels, b(1)(k, l), b(2)(k, l),
via the relation b = f0∂zψ . This also indicates that the time variability of the Fourier
coefficients of ψ and of b are given by the same functions A∗

k∗l∗(t
∗).

Now, we move from dimensional to dimensionless variables. Hereafter, we set Z∗ =
N0z∗/f0 and H∗ = N0h∗/f0. Here, H∗ is the first internal radius of deformation (in
dimensional terms).

We let 1/f0 be our time scale, and the vortex radius at the ocean surface, R1, our length
scale. Therefore, the normalised values of f0 and of R1 are unity. We define a dimen-
sionless depth in the model Z = Z∗/R1 and a dimensionless radius of deformation Rd =
N0h∗/(f0R1). Note that the latter is also a normalised height of themodelH∗/R1 = H. The
horizontal coordinates are normalised similarly, x = x∗/R1, y = y∗/R1. The dimensionless
time is t = f0t∗. We also normalise the wavenumbers k = k∗R1, l = l∗R1,K2 = k2 + l2.
The streamfunction is normalised as ψ = ψ∗/(R21 f0). The dimensionless buoyancy is
b = ∂Zψ = b∗/(f0R1).

Then, we have

b(x, y,Z = 0, t) =
∫ ∫

b1(k, l, t) exp(i[kx + ly]) dk dl,

b(x, y,Z = −H, t) =
∫ ∫

b2(k, l, t) exp(i[kx + ly]) dk dl,

and the normalised streamfunction is

ψ(x, y,Z = 0, t) =
∫ ∫

ψ1(k, l, t) exp(i[kx + ly]) dk dl, (2)

ψ(x, y,Z = −H, t) =
∫ ∫

ψ2(k, l, t) exp(i[kx + ly]) dk dl, (3)

where

ψ1(k, l, t) = b1(k, l, t)
K tanh(KH)

− b2(k, l, t)
K sinh(KH)

,

ψ2(k, l, t) = b1(k, l, t)
K sinh(KH)

− b2(k, l, t)
K tanh(KH)

.

These forms of ψ at the surface and at the bottom result from the dimensionless equation
b = ∂zψ , using the cosh(Kz) and cosh(K(H + z)) form of the Fourier coefficients of ψ
mentioned above.
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Figure 1. Schematic representation of the two-level SQGmodel with the two vortices vertically aligned
(top) and laterally shifted (bottom).(colour online).

Note that these formulae correspond to a vertically bounded domain (between 0 and
−H), without any flow nor buoyancy anomaly below −H.

Material conservation of buoyancy allows us to march b1, b2 in time, and these fields
can then be inverted to obtain the streamfunction from Equations (2) and (3).

2.1.2. Initial conditions and aim of the simulations
Our two-level SQG model is initialised with a single disk of uniform buoyancy at each
level (surface and bottom). The corresponding streamfunction is given in Vic et al. (2022).
Figure 1 shows the geometry of the configuration.

We consider the interaction of two vertically aligned vortices with like-signed buoyancy
in Section 3, and of two horizontally offset vortices with opposite-signed buoyancy in
Section 4. It should be noted that any axisymmetric distribution of buoyancy corresponds
to a steady state. Hence, in the present case, the pair of circular, co-axial, vortices is steady.
In Section 3, we perturb the vortex boundary with a monochromatic perturbation, with
angular (or azimuthal) mode m. We assess whether the vortices break, and/or, rearrange
as new types of vortices such as dipoles or tripoles. In Section 4, we horizontally offset



6 X. CARTON ET AL.

the centres of the two vortices and we study their vertical re-alignment with respect to the
horizontal offset and to the vertical distance between the SQG levels.

2.1.3. Physical parameters
In this study, the vortex radii R1,R2, the deformation radius Rd, the buoyancy magnitudes
B1,B2, and the angular (or azimuthal) mode m are the physical parameters under con-
sideration. R1 is fixed as a reference length. It should be noted that increasing B1 while
keeping B2/B1 fixed simply modifies the time derivative of buoyancy. Indeed, this rate of
change scales as f0B1. Therefore, the 4 independent dimensionless physical parameters are
B2/B1,R2/R1,Rd/R1 = H andm.

Due to the large number of parameters, we start by studying a reference case, for which
the first two parameters are set to 1. Then we perform a sensitivity study of the instability
to the physical parameters by varying them separately.

2.2. Numerical model

Our numerical model is a pseudo-spectral model with 256 × 256 collocation points. We
increase the horizontal resolution to 512 × 512 points for specific analyses. The equations
are marched in time with a mixed Euler-Leapfrog scheme with an Euler step every 50 time
steps. The Leapfrog scheme is conservative in energy but tends to separate the even and
odd solutions. This is taken care of with the periodic use of an Euler time step. The spatial
derivatives are computed in Fourier space and FFT’s are used to transform the fields from
physical to Fourier space and back. The domain size is 4π × 4π (except for a few simula-
tions of vortex alignment, when the vortices are initially distant from each other; then the
domain size is 8π × 8π). Very weak hyperviscosity is used (biharmonic diffusion) with
ν4 = 8 · 10−7 at 256-resolution and ν4 = 5 · 10−9 at 512-resolution. The numerical model
has been validated in a previous study of vortex merger (Oulhen et al. 2022).

3. Nonlinear evolution of linearly unstable SQG vortices with like-signed
buoyancy anomalies

Here, we study the various nonlinear regimes of linearly unstable, two-level SQG vortices,
for various values of B2/B1 > 0,R2/R1,Rd/R1 and of the angular mode of perturbationm.
We start by considering initially vertically aligned vortices.

3.1. Vortices with equal radii and intensity

3.1.1. An overview of the nonlinear regimes of the vortex depending on its size and on
the deformation radius
Firstly, we set B2/B1 = 1,R2/R1 = 1, that is, the two patches constituting the vortex have
equal radii and buoyancy magnitudes. We run several simulations, varying Rd/R1 = H.
We perturb both buoyancy patches with a mode of deformationm = 2.

For Rd/R1 = 1 and 0.6, the Eady vortices elongate elliptically in each layer and even-
tually break into two hetons (see figure 2). This is also the case for baroclinically unstable
vortices in the two-layer (internal) quasi-geostrophic model (Helfrich and Send 1988). For
Rd/R1 = 0.5, the Eady vortices break over amixed angularmodem = 2 andm = 4 (with a
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complex elliptical and square deformation) leading to several fragments. For Rd/R1 = 0.4,
angular mode m = 4 prevails and the Eady vortices break into four hetons. Finally, for
Rd/R1 = 0.2, angular modem = 6 is dominant in the vortex evolution.

Clearly, higher modes of deformation becomemore unstable as the two levels get closer
to each other vertically. This is explained by the connection between the horizontal and
vertical scales in the SQGmodel (this link is due to the vanishing potential vorticity). Short
horizontal scales have a short vertical reach. As the two vortices get closer vertically, their
small scale perturbations can interactmore efficiently. This is consistent alsowith the linear
analysis of instability of Eady vortices, published previously (Vic et al. 2022).

We have also run simulations, for the same values of B2/B1,R2/R1 varying Rd/R1 for
the angular mode of perturbation m = 3. For Rd/R1 = 1, the growth of the perturbation
is slower than that with the angular mode m = 2. The linear growth rate of the latter
mode is indeed larger than that of m = 3 for these vortex parameters. The Eady vor-
tices evolve from a triangular to an elliptical shape and finally break into two hetons. For
Rd/R1 = 0.5, the growth rate of mode m = 3 is larger than that of mode m = 2. In the
nonlinear evolution, the vortices form three hetons. For Rd/R1 = 0.2, the vortex breaks
on a mode m = 8. This confirms the increase of the wavenumber of the most unstable
wave as Rd/R1 decreases. The destabilisation of short waves as R1/Rd increases has also
been noticed for the baroclinic instability of vortices in two-layer quasi-geostrophicmodels
(Flierl 1988, Helfrich and Send 1988).

This conclusion also holds for vortices with a hemispheric radial profile of buoyancy,
the velocity of which is calculated in the appendix; this buoyancy profile corresponds to
a top-hat profile in relative vorticity. For Eady vortices with uniform buoyancy at the two
levels, we also observe the same nonlinear regimes using CASL. Therefore our results are
generic.

3.1.2. Study of the hetonic evolution of the unstable Eady vortices
We next investigate in more detail our reference case B2/B1 = 1,R2/R1 = 1,Rd/R1 =
1,m = 2. We present in figure 2 the evolution of buoyancy at each level.

The buoyancy patches evolve continuously and simultaneously at the two levels from
near disks to ellipses. During their evolution, the angle between them increases to reach
approximately π/4 and does not vary substantially afterwards. The aspect ratio λ = b/a ≤
1 of the ellipses decreases. Here, b and a are the minor andmajor semi-axis lengths respec-
tively. Further in time, the vortices evolve towards a peanut shape. This shape indicates the
presence of higher angular modes of deformation, in particular modem = 4 which is the
first harmonic of the fundamental perturbation (m = 2). Higher even modes grow non
linearly from the interaction of the previous modes; they become important when vortex
pinching occurs. The strongly deformed Eady vortices eventually break at their center and
form two hetons.

An analysis of the angular modes of deformation, is performed for both levels. We com-
pute the difference between the buoyancy distribution at time t and the initial distribution
(considered as nearly axisymmetric because of the weak initial perturbation amplitude).
This difference is expressed in polar coordinates:

b′
j(r, θ , t) = bj(r, θ , t)− bj(r, θ , t = 0),
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Figure 2. Hetonic breaking of an unstable contra-rotating Eady vortex with uniform buoyancy at
the two levels; time-series of horizontal maps of buoyancy; the parameters are B2/B1 = 1, R2/R1 =
1, Rd/R1 = 1,m = 2. The upper two rows show the surface buoyancy evolution, and the lower two rows,
the bottom buoyancy. For each level, frames are read from left to right and then from top to bottom.
Times shown are 0, 8, 12, 20 model time units (colour online).
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where j = 1, 2 is the level index. Then, this difference is expanded in a Fourier series in θ .

b′
j(r, θ , t) =

∞∑
m=0

�[Ajm(r, t) exp(imθ)],

whereAjm is the complex amplitude of the angularmodem component of the perturbation
on the buoyancy patch at level j. Here we compute the L2 norm of the modulus of Ajm and
we present the amplitude ajm(t) with respect to time. This amplitude is calculated via

a2jm(t) =
∫ L

0
|Ajm|2(r, t) r dr,

where L is large (given by the domain size) so that vortex velocity at this distance is small.
Results are shown in figure 3. Clearly, the elliptical component of the deformation grows
first, followed in time and in amplitude by the m = 4 mode. The antisymmetric mode
m = 1 and the triangular modem = 3 have a small amplitude.

The ellipticity and the angle of each vortex are determined from the geometricmoments
of buoyancy (not shown here for brevity). The value obtained confirms that the relative
angle between the two vortices is π/4. This relative orientation of the two vortices max-
imises the destabilizing influence exerted by each vortex on the other (or, in other words,
it maximises the resonance of unstable Rossby waves on the vortex contours). It must also
be noted that the two vortices become irreversibly deformed by acquiring a peanut shape
when their aspect ratio is smaller than 0.25. This critical value is reminiscent of that neces-
sary for the breaking of the Kirchhoff elliptical vortex in two-dimensional incompressible
fluids (λ = 0.33).

3.1.3. A vortex evolutionmodel with a single ellipse
Considering the similarity between the evolution of our unstable circular Eady vortices,
and the evolution of strongly elongated Kirchhoff ellipses, we next study the stationarity
and the stability of an elliptical vortex of constant buoyancy depending on its initial aspect
ratio.

We perform numerical simulations using a single level SQGmodel where the buoyancy
is confined to a surface, over an infinitely deep ocean/fluid. Specifically, we run simulations
for a/b = 1/λ = 3, 4, 5. Two simulations are run for each case: a short one with a high-
frequency temporal sampling to determine the initial rotation rate� of the ellipses, and a
long one to assess the long-term evolution of each ellipse.

We numerically obtain an estimate for � ≈ λ for a unit-buoyancy elliptical vortex in
the range 3 ≤ a/b ≤ 5. It should be noted that the rotation rate of an elliptical vortex with
a hemispheric profile of buoyancy has been computed in Dritschel (2011). The authors
showed that indeed� is linear in λ in the range λ ∈ [0, 0.3].

Then, we observe that the constant buoyancy elliptical vortex with λ = 1/3 (or with
λ = 1/4) elongates to a peanut shape but eventually deforms back to an ellipse. In contrast,
an elliptical vortex with λ = 1/5 initially elongates and deforms irreversibly into a peanut-
shaped vortex and then breaks into two separate vortices. Again, this indicates that higher
modes can grow on an elliptical vortex, during its unsteady, and possibly unstable, evolu-
tion; this confirms the angular mode analysis of the unstable circular vortex, presented in
Section3.1.2.
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Figure 3. Angularmodeanalysis of thehetonicbreakingof anunstable contra-rotatingEadyvortexwith
uniformbuoyancy at each level (see the text for their definition); the parameters are B2/B1 = 1, R2/R1 =
1, Rd/R1 = 1,m = 2. The amplitudes of the various angular modes are shown, the modes arem = 1, 2,
3, 4. (a): surface vortex modes; (b): bottom vortex modes (colour online).
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Figure 4. Top : Time series of horizontal maps of buoyancy showing the nonlinear breaking of an ellip-
tical vortex, with uniform buoyancy, in a vertically semi-infinite fluid; the aspect ratio of the ellipse is
b/a = 1/5 initially. Times shown are t = 0, 4, 8 from left to right. Bottom: Modal analysis of the one-
level SQG ellipse with uniform buoyancy. The two angular modes shown are m = 2, 4. For m = 2 the
initial value was subtracted (colour online).

Figure 4 shows a time series of buoyancy for the elliptical vortex with aspect ratio 1/5.
The growth of mode m = 4 is clear in the deformation of the ellipse. The growth of this
mode, simultaneous with that of modem = 2 is confirmed by a angular mode analysis of
the elliptical vortex boundary in time. To achieve this modal analysis, the initial ellipse was
subtracted from the instantaneous vortex shape.

As a conclusion, the critical aspect ratio for elliptical SQG vortex breaking (with
constant buoyancy) lies in λ ∈ [0.2, 0.25].

We also perform simulations in a two-level SQG model. We initialised identical co-
rotating ellipses of constant – but opposite signed – buoyancy at the two levels (with
B2/B1 = −1, R2/R1 = 1, and with the same aspect ratio).

For Rd/R1 = 1 and λ > 0.2, the elliptical vortices do not break and they eventually
evolve to adopt a steady elliptical shape, as in the one-layer case. For Rd/R1 = 0.8, the
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Figure 5. Nonlinear regimes of the unstable contra-rotating Eady vortex, with respect to the buoyancy
patch radii and magnitudes, for B1 = 1, R1 = 1, H = 1,m = 2.

elliptical vortices with aspect ratios larger than 0.3 are meta-stable and oscillate around a
peanut shape (see panel 2 of figure 4).

In contrast, forRd/R1 = 0.6, the elliptical vortex breaks for a large range of aspect ratios,
namely λ ∈ [0.3, 0.8]. Indeed, as H or Rd/R1 decreases, mode m = 4 becomes more lin-
early unstable, and thus favors vortex breaking (Vic et al. 2022). As a conclusion, we note
the similarity between our one-level model results and those for the Kirchoff ellipse in a
two-dimensional fluid. We also note the consistency between the evolution of two-level
ellipses and those of the contra-rotating, perturbed, Eady vortices.

3.2. Nonlinear evolution of Eady vortices with different radii or intensities at the
two levels

Next, we vary the Eady vortex parameters and we classify and explain the unstable evolu-
tions of vertically asymmetric vortices. Figure 5 describes the various nonlinear regimes
obtained when varying R2/R1 and B2/B1, for Rd/R1 = 1 (H = 1) andm = 2. In the linear
stability analysis of such vortices done previously (Vic et al. 2022), R2/R1 was not varied
to keep algebraic equations tractable.

Clearly, the linearly unstable Eady vortex breaks into two hetons when the buoyancy
patch radii are identical at both levels. When the bottom vortex patch is smaller and less
intense than the surface one, it has a smaller influence on the latter. Therefore, the bottom
patch breaks into two symmetric vortices, on each side (horizontally) of the surface patch.
This evolution is much slower than that leading to the formation of two hetons. Then,
after nonlinear stabilisation, the vortex compound thus obtained is called a �-tripole, a
structure observed previously, in particular in the collision of two oppositely signed hetons
(Reinaud and Carton 2009a, Sokolovskiy and Carton 2010); the formation of a �-tripole
is illustrated in Figure 6. This figure presents a time-series of the buoyancy field, at the
surface and bottom. In this case, the surface vortex undergoes a strong elongation and
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Figure 6. �-tripole formation from the nonlinear evolution of an unstable contra-rotating Eady vortex
with uniform buoyancy; time-series of horizontal maps of buoyancy. The upper row (a) shows the sur-
face buoyancy, and themiddle row (b), the bottombuoyancy. Times shown are 0, 48, 72, 120model time
units. The bottom row (c,d) shows the angular mode analysis of the unstable contra-rotating Eady vor-
tex forming a�-tripole; the parameters are B2/B1 = 0.5, R2/R1 = 0.65, Rd/R1 = 1,m = 2. The various
angular modes shown are m = 1, 2, 3, 4. Left panel (c): modes of the surface vortex; right panel (d):
modes of the bottom vortex (colour online).

the bottom vortex breaks into two symmetric secondary vortices. After several turn-over
periods of the whole structure, the surface vortex relaxes to a less elongated state while
the bottom two vortices become its lateral satellites. The whole structure rotates and its
ellipticity continues to fluctuate.

The angular mode analysis of the various angular modes is shown for this case on the
bottom row of Figure 6. It should again, be noted that only even modes grow significantly
on each patch. At the surface, modem = 2 grows with superimposed oscillations, a result
of the contra-rotation of the two-ellipses. Such an oscillation is also shown in Carton and
McWilliams (1996).Modem = 4 growsmore slowly but follows the general trend ofmode
m = 2. Both modal amplitudes reach a peak after which they stabilise, decay and oscillate.
This peak corresponds to the third panel of figure 6 where the vortex is very elongated. The
last stage (stabilisation) corresponds to the relaxation of the vortex towards an ellipse at the
surface and to two satellites at the bottom. It should be noted that the bottom perturbation
amplitude is weaker, but also that it acts on a weaker vortex. This bottom vortex breaks
earlier in the evolution of the whole structure.
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Figure 7. Nonlinear evolution of an unstable contra-rotating Eady vortex with uniform buoyancy in a
disk; the parameters are B2/B1 = 1, R2/R1 = 0.5, R1/Rd = 1,m = 2. The upper row shows the surface
buoyancy, and the lower row, the bottombuoyancy. Times shown are 0, 90, 180model time units (colour
online).

When the two patches of the Eady vortex have similar buoyancies, but with a smaller
bottom patch, their mutual deformation can become insufficient to break them as hetons.
The final outcome of the instability is two contra-rotating elliptical vortices at the two levels
(Carton and McWilliams 1996). The formation of contra-rotating ellipses is illustrated in
figure 7. This figure presents the surface and bottommaps of buoyancy in the caseR2/R1 =
0.5, B2/B1 = 1, Rd/R1 = 1, m = 2. Clearly the vortex ellipticity initially increases at each
level while the vortex rotates. The periodic shear exerted by each vortex on the other level
vortex then leads to a pulsating aspect ratio. The bottom vortex, which is smaller, is more
deformed.

When varying R2/R1 and B2/B1, for H = 0.5 and m = 2, higher modes grow and in
particular, when the elliptical mode m = 2 is perturbed, its harmonic m = 4 grows on
the vortex. Both modes are unstable, even if the graver mode is slightly more unstable.
Therefore, the final outcome of the nonlinear simulation is usually two hetons, a�-tripole
or an elliptical vortex, with smaller features due to the growth ofmodem = 4 (see figure 8).

Further simulations are performed varying Rd/R1 and B2/B1 for R1 = R2 and m = 2.
They show the growth of mode m = 4 for Rd = 0.4, 0.5 and of mode m = 6 for Rd = 0.2
in agreement with the linear stability analysis of Vic et al. (2022). Simulations are also per-
formedwith an initial perturbation ofmodem = 3. They show the breaking of the unstable
vortex into hetons for Rd/R1 = 1, into�-tripoles for Rd/R1 = 0.5 and vortex breaking on
short unstable wavesm = 6, 8 forRd = 0.2. Again, this confirms the pre-eminence of short
waves for smallH. Finally, we added a perturbation withm = 4. As predicted by the linear
stability analysis (Vic et al. 2022), mode m = 4 is linearly unstable only for Rd/R1 ≈ 0.5.
Numerical experiments with the spectral code show that for Rd/R1 = 0.7 to 1, adding a
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Figure 8. Nonlinear regimes of the unstable contra-rotating Eady vortex, with respect to the patch radii
and buoyancies, for B1 = 1, R1 = 1, R1 = 2Rd (H = 0.5),m = 2.

mode m = 4 perturbation leads to a transition to a vortex deformation on mode m = 2
(which is the subharmonic ofm = 4, and which is the most unstable linearly), and finally
to vortex breaking into two hetons. ForRd/R1 = 0.5, vortex breaking occurs onm = 4 and
forms 4 hetons. For Rd/R1 = 0.6, a complex wave interaction occurs and the final result is
asymmetric.

3.2.1. Influence of a horizontal offset between the vortex centers
Webriefly report on the influence of a finite horizontal distance between the vortex centers.
If the two centers are far apart, the effect of one disk of buoyancy on the other is comparable
with that of a point vortex. It is known that the far velocity field of a vortex is an advection
and a deformation. In this deformation field, the mode 2 component (with respect to the
deformed vortex center) has a larger amplitude than that of mode 3, and further on for
higher modes. Therefore we expect the horizontal offset to:

(1) create a hetonic coupling when the two vortices are far apart (i.e. couple the surface
and bottom vortex patches as a baroclinic dipole which translates perpendicularly
to the dipole axis)

(2) favor both mode 1 and 2 deformation for closer vortices,
(3) contribute to the growth of even higher modes of deformation (modes 3 and 4) for

very close vortices.

After this physical analysis, we turn to numerical experiments where we vary the distance
d between the vortex patch centers, for given Rd/R1, R2/R1, B2/B1.

First, we set Rd/R1 = 1,R2/R1 = 1,B2/B1 = 1. While for d = 0, the breaking of the
vortex into twohetons is symmetrical, it becomes increasing asymetric asd increases.How-
ever, for d = 0.9, the vortices do not break but form a heton. This illustrates the transition
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between hetonic coupling of twowidely offset vortices and baroclinic instability of a slightly
tilted contra-rotating vortex (Polvani et al. 1989, Dritschel 1995).

Second, we set Rd/R1 = 1,R2/R1 = 0.5,B2/B1 = 1. A similar result is obtained. For
d = 0, a dipolar breaking of each vortex occurs, leading to the formation of two hetons.
In contrast, for d = 1, the surface and bottom vortices pair to form a single heton without
breaking. Finally, we set Rd/R1 = 0.5,R2/R1 = 1,B2/B1 = 1. We recall that for d = 0, the
vortex patches undergo a mode m = 4 deformation. As d grows, the single heton which
forms and moves away from the plane center, leaves behind fewer and fewer fragments.

3.3. Amodel of the�-tripole with three vortices on two levels

We next show that an initial aggregate of three buoyancy patches, one at the center of the
fluid surface, two laterally shifted at the bottomof the fluid, can adjust nonlinearly to form a
�-tripole.We run a simulation with B2/B1 = 0.5, R2/R1 = 0.5,Rd/R1 = 1, d = 4R2 start-
ing from three circular patches. Here d is the distance between the centers of the two
patches. Figure 9 shows that each patch deforms under the influence of the other two
patches, and in particular, elongates. The surface patch finally adjusts to an ellipse. The
bottom satellite vortices then lie along the surface vortex boundary.

4. Evolution of two offset, co-rotating Eady vortices, with opposite-signed
buoyancy anomalies

In this section, we assess the robustness of a co-rotating Eady vortex, with opposite-signed
buoyancy anomalies at the two levels (B2/B1 < 0).More specifically, we study the ability of
such a vortex, initially tilted, to straighten up. This process is important in geophysical flu-
ids. In the ocean or in the atmosphere, drifting vortices are affected by a perturbation with
horizontal mode m = 1. This perturbation leads to the tilting of the vortex with respect
to the vertical axis. The robustness of tilted vortices is therefore an important questions.
Again, for simplicity, we consider vortices with uniform buoyancy at each level. Initially,
we offset the surface and bottom patches horizontally, by a distance d.

Figure 10 shows the evolution of tilted vortices with R2/R1 = 1, B2/B1 = −1, for vari-
ous values of Rd/R1 and of the relative horizontal offset d/R1. The nonlinear evolutions are
either towards the vertical alignment of the vortices, or their co-rotation around a central
axis with the absence of convergence of the two patches towards the center.

For Rd/R1 ≤ 1.0, vertical alignment occurs for vortices initially distant of 3.3 vortex
radii or less. When vortices are initially farther away, they simply rotate around the center
of the plane.Note that this critical distanced/R1 = 3.3 is close to the critical distance for the
merger of two vortices, with uniform vorticity, in two-dimensional incompressible flows
(Melander et al. 1988). It is also the critical distance for the merger of two vortices in a
two-layer (internal) quasi-geostrophic model, when the vortices are confined at the fluid
surface (Polvani et al. 1989).

WhenRd/R1 is increased beyond 1, the critical distance for alignment decreases rapidly.
ForRd/R1 = 1.25 it is less than 3. ForRd/R1 = 1.4, no complete alignment is observed any-
more. Only a moderate convergence of the two patches occurs. Their separation decreases
by half and then oscillates. The vortices mostly co-rotate. For Rd/R1 = 1.5, only a weak
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Figure 9. Time series of buoyancymaps for the surface (solid lines) and thebottom (dashed lines) super-
imposed, showing the evolution of a vortex aggregate towards a Lambda tripole. Times shownare t = 0,
28, 42 model time units. The vortex parameters are B1 = 1, B2 = 0.5, R1 = 1, R2 = 0.5, H = Rd = 1,
d = 4R2 (colour online).

(partial) convergence followed by a weak radial oscillation, accompanies the co-rotation
of the two vortices. Finally, for Rd/R1 ≥ 2, only co-rotation is observed.

Our regime diagram is similar to the one of Polvani (1991) (his figure 7) for the align-
ment of two-layer, internal quasi-geostrophic vortices. The critical value for alignment is
also d/R ≈ 3.3 and the maximal value of 1/γ (the equivalent of H in our study) is unity.
It should be noted also that, for very small d/R initially, alignment is replaced by partial
convergence.

The final state of the vortex depends on H. Various cases are shown below.
Firstly, for B2/B1 = −1, R2/R1 = 1, Rd/R1 = 1, d = 1, alignment occurs. Figure 11

shows time series of buoyancy maps. The two patches overlap increasingly with time. To
ensure conservation of angular momentum, the vortex sheds filaments which wrap around
the final vortex. The interaction of the central vortex with the peripheral vorticity sup-
ports vortex contour waves (vortex Rossby waves) which induce a phase shift between the
two vortices. This explains why the inter-centroid distance oscillates while decreasing with
time.

Figure 12 shows that, initially, the streamlines and the buoyancy isolines do not coincide
(the fluid surface is shown here; the situation is symmetric at the bottom). This indicates
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Figure 10. Nonlinear regimes of the tilted co-rotating Eady vortex, with respect to the vertical height of
the domain H (or Rd/R1) and to d/R1 for R2/R1 = 1 and B2/B1 = −1.

that the buoyancy field is unsteady and that buoyancy is advected towards the center of
the plane (as shown by the streamlines). At the end of the simulation (same figure), the
buoyancy distribution is not steady yet but the streamlines match the buoyancy contours
better. A longer simulation would be necessary to attain full stationarity, if any.

In contrast, for B2/B1 = −1, R2/R1 = 1, Rd/R1 = 1, d = 4, co-rotation occurs.
Figure 13 shows time series of buoyancymaps. Clearly, each vortex rotates around the cen-
ter of the plane, as shownby the inter-centroid distance, which only varies little. Themutual
influence of the two vortices is manifested by the Rossby waves on the vortex boundaries.
As it appears in this figure, low modes of deformation grow first (modes 1 and 2, leading
to a slightly asymmetric ellipse for the vortex contours). Then higher modes grow by non-
linear interaction: this is seen on the last buoyancy map of figure 13 where a modem = 4
deformation of the vortices appears. Nevertheless, this contour deformation never leads
the vortices to deform so much to overlap near the center of the plane. Vertical alignment
does not occur. Finally, the regimes of weak to moderate convergence, with oscillation,
lie in between the previous two regimes. The time variation of the inter-centroid distance
increases from co-rotation, to weak to moderate convergence and finally to vertical align-
ment. The amplitude of contour deformation also increases. The combination of the two
effects favor alignment.
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Figure 11. (Top and middle) Time series of buoyancy maps at the fluid surface (solid lines) and at the
bottom (dashed lines) superimposed, showing the evolution of a tilted Eady vortex towards a vertical
column. Times shown are t = 0, 24, 40 model time units. The vortex parameters are B1 = 1, B2 = −1,
R1 = R2 = 1, H = Rd = 1, d = 1; (bottom) Time series of the inter-centroid distance for this simulation
(colour online).
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Figure 12. Maps of buoyancy (black dashed lines) superimposed on streamlines (green solid lines) for
the fluid surface. Times shown are t = 0, 40 model time units. The vortex parameters are B1 = 1, B2 =
−1, R1 = R2 = 1, H = Rd = 1, d = 1 (colour online).

5. Discussion

Our numerical experiments yield the following results:

• for like-signed buoyancy at the surface and bottom, contra-rotating Eady vortices
undergo baroclinic instability for increasing angular wavenumbers as the fluid height
decreases. Low wavenumber (m = 2, 3) perturbations lead to hetonic breaking when
the two-level buoyancy patches have comparable size and strength. In contrast, for
vertically asymmetric vortices, vortex elliptisation or the formation of �-tripoles, are
observed.

• The formation of a�-tripole results from a nonlinear equilibration of the linearly unsta-
ble contra-rotating Eady vortex. Higher wavenumber perturbations saturate at finite
amplitude, in particular for mode m = 4. It is also shown that a �-tripole is an attrac-
tor for nearby states: three vortices initialised in this configuration, but with a circular
shape, deform until they reach the configuration observed in the nonlinear experiments
of baroclinic vortex instability.

• For opposite-signed buoyancies at the surface and bottom (co-rotating vortices), verti-
cal alignment can occur when the total height of the fluid is smaller than, or equal to
unity, and when the initial horizontal distance between the two vortices is smaller than,
or equal to, three vortex radii. Unequal vortices have not been considered here.

• In both alignment and co-rotation regimes, vortex Rossby waves are observed. In the
alignment regime, they participate in the overlapping of buoyancy, and to he appearance
of a modem = 1 deformation (corresponding to a dipolar effect), eventually leading to
the convergence of vortices towards the center of the plane.

• Intermediate regimes, between the former two regimes, exist, exhibiting radial oscilla-
tions at various degrees. They occur more specifically for larger fluid heights (vertically
more separated buoyancy levels).

These results confirm and extend those previously obtained with a two-layer (inter-
nal) quasi-geostrophic model: in particular for baroclinic vortex instability (Flierl 1988,
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Figure 13. (Top and middle) Time series of buoyancy maps at the fluid surface (solid lines) and at the
bottom (dashed lines) superimposed, showing the co-rotation of a tilted vortex around the plane cen-
ter. Times shown are t = 0, 64, 128 model time units. The vortex parameters are B1 = 1, B2 = −1,
R1 = R2 = 1, H = Rd = 1, d = 4; (bottom) Time series of the inter-centroid distance for this simulation
(colour online).
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Helfrich and Send 1988). Clear analogies exist in the nonlinear evolutions, in particular
the existence of nonlinearly equilibrated states for linearly unstable vortices, or the possi-
ble breaking of linearly unstable vortices into hetons. Similarly, previous studies found that
vortices with like-signed potential vorticity could align in a two-layer quasi-geostrophic
model if the vortices were large and close enough initially (Polvani 1991). These similar-
ities can be related to the similarity between the Phillips and Eady models of baroclinic
instability of jets (Eady 1949, Phillips 1954). Nevertheless, the SQG model produces more
fine-scale features (filaments) and also leads to higher vertical velocities as described in
Lapeyre (2017). This is important in particular for near surface dynamics. Smith and
Bernard (2013) noted that the SQG model can apply to a depth with a rapid change in
stratification. This is the case of the base of the oceanic mixed layer. The internal quasi-
geostrophic model, on the contrary, pertains to deeper vortices. Despite this, results from
the two models concerning the baroclinic instability of vortices, or their ability to align
vertically, are quite similar.

6. Conclusion

Our study extends those on vortex barotropic instability in surface quasi-geostrophic
dynamics. They provide results comparable to those of vortex studies in internal quasi-
geostrophic models, but for shallower vortices. Naturally, this study should be extended to
ageostrophic dynamics (either in a two-level SQG+1 model, which is an extension of the
SQGmodel (Hakim et al. 2002), or in a fully stratified, primitive equation,model). Oceanic
vortices have complex vertical structures, and, when deformed, they are associated with
finite vertical velocities. Complex three-dimensionalmotions and vortex structures are not
included in the present study. Using a primitive equation model (3D hydrostatic model)
will substantially extend our results, via the inclusion of high frequency components of
velocity and by allowing ageostrophic instabilities to occur.

Concerning observations at sea, new measurement devices (tow-yo, gliders) allow
repeated measurements of interacting vortices at the submesoscale (McWilliams 1985,
Chavanne et al. 2010, Bosse et al. 2016). Very high resolution numerical models also show
evidence of such processes (Gula et al. 2015, Morvan et al. 2019). Such interactions were
proved to strengthen these small vortices against the decay due to ambient shear and strain
effects, turbulent diffusion, Rossby wave dispersion or topographic interactions, and thus
make submesoscale eddies more robust. In particular it is important to quantify the effi-
ciency of vortex alignment and vortexmerger, in three-dimensional ocean dynamics, when
the vortices are not isolated. Our study is only a step towards this goal. Further studies
will include more physical effects (in 3D stratified rotating dynamics), but should retain
few physical parameters to remain numerically tractable. The quantification of 3D vortex
interactions will refine assessments of the contribution of oceanic eddies to heat and salt
transport at large scale.
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Appendix

Here we calculate the streamfunction associated with a hemispheric radial distribution of buoyancy
for a two-level SQG vortex :

Bs = Bs0
√
1 − r2 He(1 − r), Bb = Bb0

√
1 − r2 He(1 − r), (A.1)

where He is the Heaviside function He(x) = 1 if x ≥ 0 and He(x) = 0 if x< 0. The angular velocity
of a single vortex defined by this steady state is drawn in Figure A1.

Indeed, for any buoyancy bs or bb (Vic et al. 2022) (where s stands for surface and b for bottom):

ψ s(r,φ, z = 0, t) =
∑
n∈N

∫ ∞

0

Jn(ρr)
σ sinh(ρσ)

(
b̂b − b̂s cosh(ρσ)

)
dρ exp(inφ),

ψb(r,φ, z = 1, t) =
∑
n∈N

∫ ∞

0

Jn(ρr)
σ sinh(ρσ)

(
b̂b cosh(ρσ)− b̂s

)
dρ exp(inφ),

where σ = N0H/f0.
Computing the streamfunction of the steady state requires the Fourier transforms of the steady

state buoyancies: for ρ > 0 and n ∈ Z∗:

B̂s(ρ, n) = Bs0
2π

∫ 2π

0

∫ 1

0

√
1 − r2 Jn(ρr) r exp(−inφ) dr dφ = 0. (A.2)

Figure A1. Graph of the angular velocity for a single hemispheric profile vortex in a 2-layer SQG model
(colour online).
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For n = 0, posing r = sinα, using formula 11.4.10. from (Abramowitz and Stegun 1964) and the
equality

J3/2(x) =
√

2
π

sin x − x cos x
x3/2

,

we have:

B̂s(ρ, 0) = Bs0

∫ 1

0

√
1 − r2J0(ρr) r dr, (A.3)

= Bs0

∫ π/2

0
cos2 α sinα J0(ρ sinα)dα, (A.4)

= Bs0
√
2 �

(
3
2

)
J3/2(ρ)
ρ3/2

, (A.5)

= Bs0

√
π

2
J3/2(ρ)
ρ3/2

, (A.6)

B̂s(ρ, 0) = Bs0
sin ρ − ρ cos ρ

ρ3
, (A.7)

and similarly for

B̂b(ρ, 0) = Bb0
sin ρ − ρ cos ρ

ρ3
. (A.8)

From these identities, the steady state streamfunction at the two levels are:

�s(r,φ, z = 0, t) =
∫ ∞

0

J0(ρr)
σ sinh(ρσ)

sin ρ − ρ cos ρ
ρ3

(
Bb0 − Bs0 cosh(ρσ)

)
dρ, (A.9a)

�b(r,φ, z = 1, t) =
∫ ∞

0

J0(ρr)
σ sinh(ρσ)

sin ρ − ρ cos ρ
ρ3

(
Bb0 cosh(ρσ)− Bs0

)
dρ. (A.9b)

The steady state velocity field is plotted in Figure A1: the radial velocities are null because the

streamfunctions have no angular component and Uφ = d�
dr

so :

Us
φ = Bb0E1(r, σ)+ Bs0F1(r, σ), (A.10a)

Ub
φ = Bb0F1(r, σ)+ Bs0E1(r, σ), (A.10b)

where the function E1 and F1 are defined by the following integrals (and drawn in Figure A2):

E1(r, σ) =
∫ ∞

0

J1(ρr)
σ sinh(ρσ)

ρ cos ρ − sin ρ
ρ2

dρ, (A.11a)

F1(r, σ) =
∫ ∞

0

J1(ρr)
σ tanh(ρσ)

ρ cos ρ − sin ρ
ρ2

dρ. (A.11b)
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Figure A2. Graphs of the functions E1 and F1 for fixed σ = 1. Note that |E1| < |F1| : at the surface, the
surface buoyancy influences the velocity more than the bottom buoyancy (colour online).
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