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Abstract
Times of Arrival (TOAs) of propagated signals are of utmost interest in seismic, underwater as well as aerial
acoustics. From TOAs, one may reconstruct the propagation media properties from known sources and sensors
positions, or conversely, find sound events locations in a known environment. Modeling the TOAs in realistic
environments (wind or current, sound speed gradients, obstacles. . . ) requires a general physical model, able
to factor in the impact of refractive and diffractive processes. We present an interface-tracking model based
on Sethian’s Fast-Marching method for computing TOAs. This method is applicable to complex, 3D meshed
environments. Examples will be given in the open atmosphere, in the ocean, as well as in an urban environment.
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1 INTRODUCTION
Propagation through complex media alters the acoustic signature of a signal. The amplitude of the signal may
be increased or strongly dampened, the frequency content may change. Working with and interpreting complete
time series therefore represents a challenge. However altered the measured acoustic signature of an impulse
sound might be, Times of Arrival (TOAs) may most of the time still be extracted. Despite their apparent sim-
plicity, TOAs carry a lot of useful information about the propagation medium. They are widely used for source
localization [1, 2] or acoustic tomography applications through comparison between measurements and model
predictions. The more physically accurate the propagation models, the more information about the medium may
be taken advantage of.
Many modelling approaches have been investigated throughout the years in the different acoustic communities.
The evolution of the available computational resources has paved the way for high resolution, 3D acoustic
models in the time or frequency domains. The cost of these simulations remains however prohibitive as soon
as numerous simulations are required.
Lighter and faster methods have thus been developed. Ray tracing methods (high frequency approximation)
with various degrees of physical realism and mathematical complexity have been proposed, but multipaths and
shadow zones remain a critical issue. Gaussian beams approaches have overcome some of these limitations
while bringing up new questions.
Starting from the end of the 80’s, methods predicting TOAs in a whole domain have emerged in the seismic
community. These methods are based on Huyghens principle and draw upon graph theory algorithms (Dijkstra
algorithm) to compute the TOAs in a grid very effectively in a single-pass fashion. The TOAs thus predicted
are the first TOAs, and the first TOAs only. TOAs coming from e.g. reflections are not computed. A further
improvement is brought about in the 90’s with the mathematical viscosity solution theory, which provides a
suitable theoretical framework for obtaining the first TOAs in arbitrarily complex environments, at a small
computational cost. The resulting methods have been called Fast-Marching or Ordered Upwind methods.
This paper presents a framework to predict first times of arrival throughout meshed domain: Cartesian grids,
curvilinear meshes and general unstructured meshes. We name it the IFM, for Institute Saint-Louis Fast-



Marching Model. In the next section, the IFM model is introduced briefly. Examples of propagation through a
complex atmosphere, the ocean and an urban environment are presented in section 3. Section 4 concludes.

2 ACOUSTIC MODEL
Instead of computing the full 3D pressure field at every point of the meshed domain, the IFM tracks a simple
wavefront. Let c and w be the medium sound speed and 3D wind (or current), respectively. Let T be the first
TOA throughout the domain. The TOAs in the domain may be obtained by solving Eq. (1):

||∇T ||×
(

c+w · ∇T

||∇T ||

)
= 1. (1)

The isosurfaces of T may be seen as the acoustic wavefronts at given propagation times.
In this study, we use a solver of Eq. (1) based on the model of Sethian and Vladimirsky [3], extended to
3D and Cartesian and curvilinear meshes. This choice is motivated by the generality of their formulation. It
addresses general anisotropic problems, where the wavefront propagation depends not only on the position of
the front, but also on the direction of propagation [3, 4], e.g. wind, for application in atmospheric acoustics,
or currents in underwater acoustics. This approach readily applies to seismic acoustics [5, 6] or underwater
acoustics [7].
The IFM propagates these wavefronts from an initial “known” subdomain, e.g. a single point for an acoustic
point source. Let us define the interface between the “known” and the “unknown” subdomains as the set
of points at the boundary of the “known” domain. The IFM then finds the point with the smallest TOA in
the interface which is transferred to the “known” domain, compute its neighbors’ TOAs and add them to the
interface. The TOAs are computed from the “known” points, by means of Eq. (1). The algorithm stops when
all points are “known”.
Numerically speaking, the equation has to be approximated on a discrete arbitrary mesh. Let v be the discrete
approximation of ∇T . One has: v ' P∇T . The matrix P is calculated from the “known” neighbors positions
(it is therefore position-dependent) and will be explicited in the different cases of Sec. 3.
Equation (1) may therefore be rewritten, following Sethian and Vladimirsky [3], as (with the notation AT = trans-
pose of A):

vT (PPT )−1v×
(

c+w · P−1v
||P−1v||

)2

= 1. (2)

In theory, refining the mesh makes the solution converge to the viscosity solution. It is however not always
practical for large computation domains, and may be balanced by use of higher order upwind stencils for v.
The gradient v coefficients depend on the TOA value of the neighbors and of the coefficients of the chosen
finite difference scheme [3, 5, 8].
In isotropic cases (no wind, w = 0), this equation reduces to a standard quadratic equation and may be solved
analytically. In anisotropic cases (w 6= 0), an iterative solver is required. Anisotropy is accounted for by a
retroaction loop [9] and the implementation of Yatziv et al. [10] is retained for its linear scaling of the compu-
tation time and the number of points.
The IFM has been validated against Finite-Difference Time Domain simulations (FDTD) of an impulse signal
in a domain with obstacles and strong sound speed contrasts. The IFM wavefront and the FDTD simulations
coincide everywhere, including behind obstacles where only diffracted waves propagate [2].

3 APPLICATIONS
The acoustic model may further be adapted to different kind of meshes depending of the scenario. This section
presents applications to propagation
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Figure 1. (a-c) Examples of measured atmospheric profiles somewhere in North Germany, in February. (d)
Propagation of acoustic wavefronts in the atmosphere defined by the (a-c) data (blue wavefront) and the (a-c)
data with reversed wind (yellow wavefront). The simulation domain is 20 km×10 km×4 km in the y, z and x
direction, respectively.

• in a complex atmosphere,

• in the ocean,

• in an urban environment.

3.1 Atmosphere
The model of the previous section is run here on a 40 million points 20 km×10 km×4 km Cartesian domain.
The computation takes a few minutes on a single CPU. Second order upwind finite difference are used [5]. The
neighbors of any given points are one grid step away in each dimension, the matrix P is diagonal.
The atmosphere through which the wavefronts propagate is shown on Figure 1. The curvature of the wavefronts
may be linked to the changes in the wind and temperature profiles. It is thus possible to account for the
anisotropic effect of the wind on sound propagation. As mentioned in the previous section, an analytical solution
is possible in the absence of wind, which drastically improves the speed of the calculation (from about 130,000
points/s to more than 1 million points/s).
The wavefronts propagate in an atmosphere with an upward refracting atmosphere due to the sound speed profile
and the wind profiles up to 6 km. This creates a so-called shadow zone. As opposed to ray tracing techniques,
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Figure 2. (a) Sound speed c in the ocean, close to the US Eastern coast. The vertical dimension has been
stretched by a factor 50. (b) Snapshots of the acoustic wavefront from an impulse source close to (40N,−68W )
after 70, 200 and 330 seconds of propagation.

the IFM is able to predict TOAs in these regions. However, only the wavefront is computed. Information
regarding the amplitude is not accounted for by the model. It is therefore possible that the model would predict
TOAs that might not actually be measured, depending on the frequency content of a given signal, or on how
deep into the shadow zone the receiver is. A prior physical analysis is required to define the region in which
the model results are meaningful for comparison to experimental data.

3.2 Ocean
The method is now applied to first TOA determination in the ocean. The sound speed data from Figure 2a
are the output of a realistic ROMS simulation for a 1000 km×800 km region, close to the US East coast.
The simulation domain has 2000×1600 points and 50 terrain-following veritcal levels. It is forced by realistic
surface forcings and boundary ocean data from a coarser resolution model. More details may be found in Gula
et al. [11]. The high sound speed at the surface is due to the warm Gulf Stream current off New England. The
data are given on a 160 million points terrain-following curvilinear mesh, and also include the 3D velocity field
(not shown).
The IFM is extended to curvilinear meshes for propagation on terrain-following meshes. The formalism is
exactly the same as in the previous sections. Only the matrix P changes, and must now be expressed in term of
the Jacobian matrix of the curvilinear transform [12]. The computation time on a single CPU, is of around 90
minutes (30,000 points/s), due to the heavier computations involved (Jacobian matrices to inverse) and to our
specific implementation, which prioritizes low memory usage over efficiency. The code runs on a 16GB laptop.
An example of point source propagation is illustrated on Figure 2b. The “creasing” on the wavefronts is caused
by the heterogeneity of the sound speed distribution. Even if the oceanic velocities are much smaller than the
sound speed (< 1m/s nearly everywhere vs. 1500 m/s), the propagation anisotropy may be observed as in the
atmospheric case. It may therefore possible to use the IFM for acoustic tomography of the ocean.

3.3 Urban environments
The method is now applied to an urban propagation scenario. The considered domain is of size 170 m×170 m
×20 m (Figure 3). To take into account the variety and the complexity of the shape of the building, extension
of the IFM to unstructured meshes is carried out, extending ref. [3] to 3D. The matrix P rows now contain the
vectors connecting the current point to its neighbors.
As the algorithm requires only the list of the neighbors for each mesh point, the mesh may feature any kind
of 3D element (tetrahedron, pyramid, hexahedron...). High order gradient computations are however much more



Figure 3. Snapshots of acoustic propagation of a point source in a realistic urban environment. Domain size is
170 m×170 m×20 m. The brown lines are the ground-level values of the TOAs wavefronts.

difficult to implement. They are furthermore not always necessary, since the mesh may be refined, e.g. close to
the sound source and along building edges to enhance the computation accuracy.
The lines on the ground illustrate the effects of the environment on the TOAs. Corrections of the order of up
to several hundred ms may be expected compared to direct propagation in straight line, which may be seen as
sensor positioning uncertainties of several meters.

4 CONCLUSIONS
The IFM interface-tracking framework presented in this article is a very general framework for predicting TOAs
in arbitrarily complex environments. It may be applied on various types of mesh, from regular Cartesian to
curvilinear grids, to unstructured meshes. High order schemes for TOA computation may be used when preci-
sion is of the essence. Application to ocean or atmospheric acoustics are considered. The IFM may therefore
be used for a general set of applications that require first TOAs in realistic 3D media with non-flat ground or
bottom and arbitrary medium properties, such as source localization or acoustic tomography.
The IFM is further not limited to point sources. Elongated sources (such as the Mach waves generated by
supersonic projectiles or aircrafts) may also be treated in an identical way [2].
It should however be kept in mind that the signal amplitude is not accounted for by the model. At large
distances or deep in shadow zones, the framework may numerically predict TOAs that cannot be measured
experimentally, because of too low a signal amplitude or too high a noise level. The physical validity limits
have to be defined for each specific application.
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