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It is known that for finite Rossby numbers geostrophically balanced flows develop
specific ageostrophic instabilities. We undertake a detailed study of the Rossby–
Kelvin (RK) instability, previously studied by Sakai (J. Fluid Mech., vol. 202, 1989,
pp. 149–176) in a two-layer rotating shallow-water model. First, we benchmark our
method by reproducing the linear stability results obtained by Sakai (1989) and
extend them to more general configurations. Second, in order to determine the
relevance of RK instability in more realistic flows, simulations of the evolution of
a front in a continuously stratified fluid are carried out. They confirm the presence
of RK instability with characteristics comparable to those found in the two-layer
case. Finally, these simulations are used to study the nonlinear saturation of the RK
modes. It is shown that saturation is achieved through the development of small-scale
instabilities along the front which modify the mean flow so as to stabilize the RK
mode. Remarkably, the developing instability leads to conversion of kinetic energy of
the basic flow to potential energy, contrary to classical baroclinic instability.

1. Introduction
The study of instabilities of vertically sheared flows in rotating stratified fluids

has provided understanding of important aspects of mid-latitude motions in the
atmosphere and ocean, starting from the work of Eady (1949) on baroclinic instability.
The latter has been identified as the major instability occurring for flows with small
Rossby numbers. It is well described in balanced models such as the quasi-geostrophic
model and can be interpreted in terms of the resonant interaction between two Rossby
waves (Hoskins, McIntyre & Robertson 1985; Hayashi & Young 1987).

However, a vertically sheared flow in the stratified rotating fluid displays other
instabilities as well. These are not captured by balanced approximations and hence are
ageostrophic instabilities. They were first addressed for the uniform vertical shear in the
stratified fluid by Stone (1966) who demonstrated appearance of symmetric instability.
The Kelvin–Helmholtz instability also appears for non-uniform vertical shear profiles
(Drazin & Reid 1981; Vanneste 1993). For intermediate values of the shear, both
Stone (1970) and Tokioka (1970) identified other ageostrophic instabilities, at scales
shorter than those of conventional baroclinic instability. These modes however have
weaker growth rates, and it was hence argued that they would not be relevant
(Stone 1970). Their structure involves inertial critical levels (Jones 1967) in the flow
and the connection of balanced motions to inertia–gravity waves through that level
(Nakamura 1988; Plougonven, Muraki & Snyder 2005). Corresponding growth rates
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are exponentially small for small Rossby numbers (Molemaker, McWilliams & Yavneh
2005), making them relevant only for significant vertical shears.

Baroclinic instability is traditionally explained with the help of the two-layer model
(Phillips 1954). The stability of the ageostrophic version of the Phillips’s model was
studied by Sakai (1989), who showed the existence of unstable modes involving the
resonance between a Rossby wave in one layer and a Kelvin wave in the other. Hence
the instability was called Rossby–Kelvin (RK). In contrast to the results of Stone
(1970), the growth rates of this instability proved to be comparable to or even larger
than those of the baroclinic instability.

Sakai (1989) carried out the linear stability analysis for the two-layer fluid in a
symmetric configuration which is known to be degenerate (Pedlosky 1987, § 7.11),
both layers having the same mean depth. Hence, several questions arise: (i) What are
the manifestations of this instability in the more general case? (ii) Are the unstable
modes and their growth rates specific to the two-layer configuration, or do they
exist also in stratified fluid for sharp enough fronts? (iii) How do they nonlinearly
saturate?

The fundamental motivation for the present study is that RK instability provides
an example of coupling of balanced and unbalanced motions. Most of the dynamics
of the atmosphere and oceans in mid-latitudes have been understood using balanced
models (e.g. Pedlosky 1987). It has been thought that balanced motions could even
decouple completely from unbalanced motions, leading to the notion of an exactly
invariant slow manifold (Leith 1980; Lorenz 1980). It is now understood that slow
manifolds are quasi-manifolds (Ford, McIntyre & Norton 2000); e.g. quasi-geostrophy
defines one, and nonlinear balance defines a more accurate one. Yet the mechanisms
by which balanced and unbalanced motions can couple and interact remain poorly
understood. They have recently attracted renewed interest, from both theoretical
(e.g. Plougonven & Zeitlin 2002; Vanneste & Yavneh 2004; Molemaker et al. 2005;
Vanneste & Yavneh 2007) and experimental points of view (Afanasyev 2003; Williams,
Haine & Read 2005), motivated by questions arising both for the atmosphere and
for the ocean. In particular, in the laboratory experiments (Williams et al. 2005),
the stability of fronts has been studied to identify the coupling of balanced and
unbalanced motions. The interpretation of such experiments would benefit from a
better understanding of the stability properties of intense fronts in a stratified rotating
fluid.

Regarding the atmosphere, understanding of the coupling of balanced and
unbalanced motions can contribute to a better identification of sources of gravity
waves and their parameterizations. Indeed, a serious weakness of parameterizations
of gravity waves in general circulation models of the atmosphere (Kim, Eckermann
& Chun 2003; Fritts & Alexander 2003) is their lack of physical description of
the sources of gravity waves. A major source in midlatitudes are tropospheric
jets and fronts (Fritts & Nastrom 1992; Plougonven, Teitelbaum & Zeitlin 2003),
which are essentially balanced. Another atmospheric application is understanding of
the dynamics of secondary cyclogenesis in frontal systems. While the development
and evolution of baroclinic waves on the synoptic scale is well understood in the
atmosphere, the rapid growth of secondary cyclones at smaller scales is poorly
understood and difficult to forecast (Parker 1998). Among the variety of mechanisms
which contribute to small-scale cyclones, dynamic instabilities of a strong dry front
are a possibility to investigate.

Regarding the ocean, an open issue is the mixing required to maintain the meridional
overturning circulation. It is necessary that small-scale mixing in the interior of the
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Figure 1. The basic balanced flow considered in the two-layer shallow-water model for
δ =H1(0)/H2(0) = 0.7 and λ= �H/H2(0) = 0.5.

oceans allows dense fluid to be raised towards the surface (Wunsch & Ferrari 2004).
At present, it remains unclear how energy may cascade in the ocean interior from the
balanced mesoscale circulations to small-scale unbalanced motions that lead to the
vertical mixing (e.g. Molemaker et al. 2005). Ageostrophic instabilities may provide
a path to energy dissipation at small scales and conversion of kinetic to potential
energy.

The paper is organized as follows: in § 2 we present the linear stability analysis of
the balanced front in the two-layer fluid in various configurations; in § 3 we study the
stability of the sharp front in a continuously stratified fluid, using the atmospheric
mesoscale model Weather Research and Forecasting (WRF); and in § 4 the nonlinear
evolution of the RK mode is discussed.

2. Linear stability analysis in the two-layer fluid
We first present the model and its linearized version and introduce the key

parameters in § 2.1. We then display the instabilities, their growth rates and the
structure of the unstable modes in § 2.2 and give a short summary of the results in
§ 2.3

2.1. Overview of the model and the method

We consider the two-layer rotating shallow-water model on the f -plane with a vertical
shear flow as shown in figure 1. The domain is a vertically bounded channel of width
2Lc and height 2H0. On the f -plane the momentum and continuity equations are

Djuj − f vj = − 1
ρj

∂xπj ,

Djvj + f uj = − 1
ρj

∂yπj ,

Djhj + ∇ · (hjv j ) = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where the index j = 1, 2 denotes the upper and the lower layers, respectively; (x, y)
and v j = (uj , vj ) are the along-channel and cross-channel coordinates and velocity
components; hj = Hj (y) + (−1)j η(x, y, t) are the depths of the layers with η the
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interface displacement; πj , ρj are the pressures and the densities of the layers;
Dj = ∂t + uj∂x + vj∂y is the Lagrangian derivative; and f is the constant Coriolis
parameter.

We linearize these equations about the steady geostrophically balanced state with
the depth profiles Hj (y) and corresponding velocities Uj (y) = −(ρjf )−1∂yΠj . The
linearized equations, where uj , vj , πj and η are the perturbations to the basic state
fields, are

∂tuj + Uj∂xuj + vj∂yUj − f vj = − 1
ρj

∂xπj ,

∂tvj + Uj∂xvj + f uj = − 1
ρj

∂yπj ,

∂tη + Uj∂xη = (−1)j+1(Hj∂xuj + ∂y(Hjvj )).

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

The dynamical boundary condition at the interface between the two layers is

π2 − π1 = (ρ2 − ρ1)gη, (2.3)

where g is gravity acceleration.
In order to compare our results with those of the pioneering paper by Sakai (1989),

the basic flow configuration and the non-dimensionalization are chosen to be the
same. We will consider the basic state with U1 = − U2 = U0 and correspondingly
linear Hj (y). This is an ageostrophic version of the Phillips’s (1954) model, and both
Rossby waves and inertia–gravity waves are present in this system.

We introduce the time scale 1/f , the vertical scale H0 = H2(0), the velocity scale U0

and the pressure scale ρiU0f Rd . The Rossby deformation radius Rd = ((1/2)g′H0)
1/2/f ,

with the reduced gravity g′ = 2�ρg/(ρ1 + ρ2), will be used as the horizontal scale. We
will use only non-dimensional variables from now on without changing the notation.
The following non-dimensional equations are obtained in the limit of the Boussinesq
approximation ((ρ2 − ρ1)/(ρ2 + ρ1) → 0):

∂tuj + F Uj∂xuj − vj = −∂xπj ,

∂tvj + F Uj∂xvj + uj = −∂yπj , (2.4)

∂tη + F Uj∂xη = (−1)j+1(F (Hj∂xuj + ∂y(Hjvj ))),

π2 − π1 =
2

F
η, (2.5)

where F =U0/(f Rd) is the Froude number. The boundary conditions are vj (±1/

(2
√

Bu)) = 0 at the lateral walls, and the Burger number Bu = (Rd/(2Lc))
2 controls

the width of the channel. The height field is then written Hj = Hj (0) + (−1)jFy.
Assuming a harmonic form of the solution in the x-direction,

(uj (x, y), vj (x, y), πj (x, y)) = (ũj (y), ṽj (y), π̃j (y)) exp [i(kx − ωt)], (2.6)

we obtain an eigenvalue problem of order six which can be solved by applying the
spectral collocation method as described in Trefethen (2000) and Poulin & Flierl
(2003). A complete basis of Chebyshev polynomials is used to obtain a discrete
equivalent of the equations. This is achieved by evaluating (2.4) on a discrete set
of N collocation points (typically N = 50–100). The eigenvalues and eigenvectors of
the resulting operator are computed with MATLAB routine ‘eig’. The occurrence
of spurious eigenvalues is common in such discretization procedure. We therefore
checked the persistence of the obtained eigenvalues by recomputing the spectrum
with increasing N .
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Figure 2. Growth rates of most unstable modes in (F, k)-space for H1(0) =H2(0). Contours
displayed are 0.01, 0.02 and further on at the interval 0.02. Dotted lines correspond to the
limits of the instability zones (a) and (c) following from the frequency estimates and resonance
conditions (see text).

2.2. Instabilities and growth rates

At this point we have three independent parameters which are the Froude number
F , the Burger number Bu and the aspect ratio between the two layers δ. In order to
explore parameter space using only one parameter for the flow, F , and the streamwise
wavenumber k, Sakai (1989) restricted to a symmetric configuration, with δ = 1, and
chose to hold the relative elevation parameter λ= F/(2

√
Bu) = 0.5 constant, leading to

F =
√

Bu. To facilitate the comparison with his results, we follow the same choice, but
one should note the implication: as F varies, the width of the channel varies as λ/F .
This unfortunately does not facilitate the comparison with laboratory experiments,
such as those of Williams et al. (2005), where different non-dimensional parameters
are chosen. Moreover, these experiments are carried out in a cylindrical annulus. To
address these issues the corresponding linear stability analysis has been carried out
in a companion paper (Gula, Zeitlin & Plougonven 2009).

The results of Sakai (1989) were reproduced, and the calculation in the symmetric
configuration served as a benchmark of our method. The numerical results for the
symmetric configuration are displayed in figure 2 and illustrate the different types of
instabilities present in the symmetric configuration: (a) baroclinic instability for small
F and k (the resonance between Rossby waves; see below); (b) Kelvin–Helmholtz
instability for F ≈ 1 (the resonance between Kelvin or inertia–gravity waves); (c), (e)
RK in stability for F ≈ 0.7 (the resonance between a Rossby wave and a Kelvin or
inertia–gravity wave, respectively).

Following Ripa (1983) and Sakai (1989) the flow with velocity U0 is unstable
if there exists a pair of waves (intrinsic frequencies ω̃1 and ω̃2) which satisfy the
following conditions: the waves propagate in the opposite directions with respect to
the basic flow (ω̃1ω̃2 < 0, meaning that they have opposite energy anomalies), have
almost the same Doppler-shifted (absolute) frequencies (ω̃1 + kU0 ∼ ω̃2 − kU0) and
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Figure 3. Growth rate of most unstable modes in (F, k)-space for δ = 0.7. Contours
displayed are 0.01, 0.02 and further interval 0.02: (a) is the baroclinic instability; (b) is the
Kelvin–Helmholtz instability; and (c), (d), (e) are the RK instability.

can interact with each other. The interpretation of the unstable modes as resonances
between the neutral waves provides the explanation for the regions of parameter
space corresponding to different instabilities. Thus, the classical baroclinic instability
is interpreted as the interaction between two Rossby waves propagating in each layer
(see Hoskins et al. 1985). The condition of matching of Doppler-shifted frequencies
for two Rossby waves gives the standard condition for the baroclinic instability to
occur: k2 + l2n < 1/

√
λ (Pedlosky 1987, § 7.11), where ln is the meridional wave-number.

Now, given the constraint linking the width of the domain and the Froude number,
F =

√
Bu, ln varies linearly with F , and more precisely l0 = π/(2Lc) = πF/(2δ). Hence

the region of parameter space corresponding to baroclinic instability in figures 2 and
3 lies within the quadratic curve:

k2 +

(
πF

2 λ

)2

<
1√
δ
. (2.7)

The RK instability can also be understood in terms of Kelvin and Rossby wave
resonances. It is then possible to obtain stability conditions in the approximation
of large k, using heuristic arguments for the resonance between the Kelvin and the
Rossby wave. We estimate the absolute frequency for the Rossby wave as ωR � k F

because the intrinsic frequency of Rossby waves is small for large k. The intrinsic
frequency for the Kelvin wave in a layer of constant depth H can be written as
ω̃K = k

√
g′H . Now, in our configuration the depth of each layer Hj (y) = Hj (0) + F y

is a function of y. Using the extreme values of the depth of one layer gives bounds
on the possible intrinsic frequencies of Kelvin waves in this layer:

√
2k

√
δ ± λ. Hence,

it is most likely for a Rossby wave in one layer to interact with a Kelvin wave in the
other layer, if we have

√
2k

√
Hj (0) − λ < 2kF <

√
2k

√
Hj (0) + λ,
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with j the index of the layer containing the Kelvin wave. So if the Kelvin wave is in
the upper layer and the Rossby wave in the lower layer we get√

δ − λ

2
< F <

√
δ + λ

2
, (2.8)

and for the Kelvin wave in the lower layer and the Rossby wave in the upper layer
we have √

1 − λ

2
< F <

√
1 + λ

2
. (2.9)

In the symmetric configuration of figure 2 (λ= 0.5 and δ = 1) this gives 0.5 < F < 0.85
for both. This suggests that in this configuration and at least for large k there is a
range of Froude numbers (1/π2 < F < 1/2 in figure 2) in which no instability can
occur. Although this condition has been obtained only for large k, it can be seen in
figure 2, and it has been confirmed by numerical calculations that this stability area
exists for all k. Increasing λ or changing the aspect ratio δ can modify this gap as can
be seen in figure 3 for an asymmetric configuration (δ = 0.7).

The configuration with the layers of the same mean depth is degenerate (Pedlosky
1987, § 7.11). For example, the interaction between a Rossby wave in the lower layer
and a Kelvin or inertia–gravity wave in the upper layer have the same characteristics
(wavenumbers and growth rates) as the interaction between a Kelvin or inertia–gravity
wave in the lower layer and a Rossby wave in the upper layer. Below we present an
example of the results of the stability analysis for an asymmetric configuration, for
which the depths of the two layers are not equal, δ = 0.7 (which is the configuration
sketched in figure 1). figure 3 shows the growth rates in the (F, k)-plane for different
types of instabilities. At the lower left, for small F and k, one finds the baroclinic
instability (a). For very strong shears, F ≈ 1, Kelvin–Helmholtz instability occurs (b),
with larger growth rates (ωi ∼ 1). For intermediate values of the Rossby number,
one finds two regions of instability (F ≈ 0.5 for (c) and F ≈ 0.7 for (d)) which
correspond to RK instability. These instabilities exist due to the interaction of a
Rossby wave in one layer and a Kelvin wave in the other. However, contrary to the
symmetric case (cf. figure 2), two different RK instabilities occur, instead of a single
one.

Figure 4 shows the phase velocities and the growth rates along the section F = k/3
following the dotted line in figure 3. Baroclinic instability (a) occurs for small k

and Kelvin–Helmholtz instability (b) for k greater than 2.6. The two other peaks
(c) and (d), for intermediate values of k are the two types of RK instability, with
different growth rates. The dispersion diagram of figure 4 (upper panel) shows that
the instability occurs once two dispersion curves intersect, according to the Doppler-
shifted frequency matching described above. The dispersion curves shown in figure 4
differ from those of the symmetric case: whereas the Rossby wave phase speeds
remain nearly symmetric relative to c = 0, the phase speeds for the Kelvin waves
are displaced towards higher values. Hence, the intersection between the two modes
moves towards higher k for positive phase speeds. We thus get two distinct instability
areas. One corresponds to modes having a Kelvin wave in the upper layer and a
Rossby wave in the lower layer. The structure of such a mode is shown in the left
panel of the figure 5. The other corresponds to modes having a Kelvin wave in the
lower layer and a Rossby wave in the upper layer (right panel of the figure 5). The
characteristic velocities and pressure fields of the Rossby wave are easily recognizable
with geostrophic wind turning around pressure extrema according to the geostrophic
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Figure 4. Dispersion diagram (upper panel) and growth rates (lower panel) of the eigenmodes
along the section F = k/3 (dotted line in figure 3). Grey zones on the upper panel correspond
to the instabilities: (a) the baroclinic instability; (b) the Kelvin–Helmholtz instability; and
(c), (d), (e) the RK instability.

balance. The structure of the Kelvin waves with the wind parallel to the boundaries
and pressure extrema near the lateral boundary is also clear and points out the
ageostrophic character of this wave.

The instability area (e) in figure 3 is still a type of RK instability arising due to
the resonance between a Rossby wave and an inertia–gravity wave (first Poincaré
mode) as can be seen in figure 4. The Rossby wave propagating in the lower layer
interacts with the first Poincarré mode in the upper layer as shown in figure 6. A
simple criterion for this RK instability to occur as a result of resonance between a
Rossby wave and a Poincarré wave can be found in Sutyrin (2007).

2.3. Summary of the linear instability analysis

We thus benchmarked our method by reproducing the linear stability results obtained
by Sakai (1989) and extended them to asymmetric configurations in which two
different families of unstable RK modes exist: one with the Kelvin wave in the top
layer, the other with the Kelvin wave in the bottom layer. When the two layers
have sufficiently different depths, the two regions separate, and hence a larger region
of the parameter space yields instabilities (cf. figure 3). We have also shown that
a zone of (relatively high) Froude numbers may exist, where neither baroclinic
nor RK instability is present, and hence the flow is stable. The unstable RK
modes are significant because of their large growth rates. This is in contrast with
ageostrophic unstable modes found in flows with constant shear (Molemaker et al.
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Figure 5. The structure of the RK mode in (x, y) at the maximum growth rate for δ = 0.7:
(a), (b) and (c) correspond to the second maximum of figure 4 for F = 0.5; (d), (e) and (f )
correspond to the third maximum of figure 4 for F = 0.7; (a) and (d) are pressure and velocity
fields of the upper layer; (c) and (f ) are those of the lower layer. Interface height is shown in
(b) and (e). The fields in (a) and (f ) are typical of a Kelvin mode, and (c) and (d) are typical
of a Rossby mode. The full lines correspond to positive and the dotted lines to negative values.

(a)
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(c)

Figure 6. The structure of another ageostrophic mode in (x, y) due to the resonance between
Rossby and inertia–gravity modes at the maximum growth rate for F = 0.75 and k = 3.7 on
figure 4: (a) pressure and velocity fields in the upper layer and (c) lower layer; (b) interface
height.

2005; Plougonven et al. 2005). However, as the RK modes have been exhibited only
in the two-layer rotating shallow-water model, it is necessary to confirm that they
also exist in a continuously stratified fluid.



494 J. Gula, R. Plougonven and V. Zeitlin

3. RK instability in the continuously stratified fluid
We investigate below the instability of a front in a periodic channel by direct

numerical simulations using the WRF model (Skamarock et al. 2005). This model
has been developed to allow both operational and idealized simulations of fully
compressible, non-hydrostatic atmospheric flows. The equations of motion are
integrated in time using a third-order time-split Runge–Kutta scheme, and variables
are discretized in space on a staggered Arakawa C-grid (Wicker & Skamarock 2002).

The model was chosen for its capacity to simulate flows of increasing complexity
and realism, up to real-case studies. In previous investigations of the spontaneous
generation of inertia–gravity waves from idealized baroclinic life cycles (Plougonven
& Snyder 2005, 2007), the model has proved robust and able to provide a neat
description of the weak emission of inertia–gravity waves by atmospheric jets and
fronts.

First, we will present the model and the experimental set-up of the simulations
(§ 3.1). Second, the most unstable modes for different sets of (F, k) parameters are
described (§ 3.2). Finally the robustness of the RK modes with respect to changes of
the basic flow and/or model parameters is investigated (§ 3.3). We will see that the
front thickness and the background stratification has an effect on the growth rates
even if the dynamics remain essentially the same.

3.1. The model and the experimental set-up

The domain is a channel of size (Lx, Ly, Lz) in the f -plane, periodic in x and
bounded by lateral walls in y with a free-slip boundary condition. The free-slip
boundary condition is imposed at the flat bottom as in the two-layer model of the
previous section, and the top boundary is a free surface at constant pressure. Three
main differences with the two-layer model are (i) the background stratification (in
addition to the front), (ii) compressibility and its associated exponential decay of
density in the vertical and (iii) the top boundary condition (free surface and not a
rigid lid). These differences are not insignificant but should not affect the physical
mechanisms providing the RK instability: if the unstable modes are robust, they will
manifest themselves though with possible differences in the structure of velocity and
pressure fields and in growth rates.

The basic state is defined by the strong localized gradient of potential temperature
across the front:

θtot (y, z) = θ0 + Θzz + θ1

2

(
1 + tanh

(
z − Z(y)

D

))
, Z(y) = z0 + S y, (3.1)

where z0 is the average height of the front; S is the slope; θ1 is the potential
temperature jump; D is the thickness of the frontal zone; and Θz = constant describes
the basic stratification.

We obtain the balanced zonal jet configuration by assuming the thermal wind
balance. As we consider a purely zonal flow, the thermal wind balance is an exact
stationary solution of the full equations. Yet as described in Plougonven & Snyder
(2007), the initial jet undergoes a minor adjustment when injected in WRF. Hence,
to eliminate this adjustment the fields are averaged over two inertial periods, and the
process is repeated twice, so that the adjustment associated with the background jet
is negligible.

All variables in the WRF model are dimensional. Hence, it is necessary to choose
a physical scale for the domain. We chose to work with typical tropospheric values
of parameters: a domain height Lz = 2 H0 = 10 km with a standard stratification
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Figure 7. Initial distribution of potential temperature deviation θ (solid lines) and correspond-
ing geostrophically balanced zonal wind (grey–white areas) for (z, y). The contour intervals
are 0.25 for the potential temperature and 0.5 for zonal wind speed. The dashed lines indicate
zonal velocities U = 0.25 and U = 1.9, i.e. localization of the front zone.

Θz = Θ0/gN2 = 2.9 × 10−3 K m−1 corresponding to a buoyancy frequency of N2 =
10−4 s−2, a potential temperature θ0 = 280 K at the ground, a θ1 = 10 K potential
temperature jump along the front and a D = 500 m thickness for the frontal zone.
At this point the horizontal scale of the domain and the slope of the front (or
the wind speed) have not been set. They are determined by the choice of the two
non-dimensional numbers F = U0/(f Rd) and k, respectively the Froude number and
the wavenumber.

The Rossby deformation radius is given by

Rd =

(
1
2
g′H0

f 2

)1/2

=

(
gθ1H0

2θ0f 2

)1/2

, (3.2)

and the Froude number is

F =
U0√

g′H0/2
. (3.3)

We then describe the flow in the (F, k)-space analogous to the previous section,
using the same relation between the channel width Ly and F as in Sakai (1989):

Lx =
2πRd

k
, Ly = 2�H

Rd

F
. (3.4)

From now on, the simulations are discussed only in terms of non-dimensional
quantities, using the scalings θ1 for the potential temperature deviation θ = θtot −θmean,
2 H0 for z, Rd for x and y and U0 for all velocities. The initial state is shown
in figure 7 for F = 0.8. Note that for simplicity we return here to a configuration
with the two layers having equal mean depths, as in Sakai (1989). Yet because
of compressibility and the top boundary condition, the two layers are no longer
equivalent.

Our purpose is to determine whether the RK modes are present and robust for a
balanced front in the continuously stratified fluid. Hence, simulations are initialized
with a slightly perturbed front and carried out for various values of F and k in
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Figure 8. Vertically averaged pressure and velocity fields for the RK instability (a) above the
front (θ > 0.5) and (b) below the front (θ < −0.5) for non-dimensional parameters F = 0.8 and
k = 2.4. The full lines and the dotted lines indicate positive and negative values, respectively.

order to identify the unstable modes along the line F = k/3. A breeding procedure
is applied in order to isolate the most unstable normal mode, if any, for each set of
parameters used. The most unstable mode is computed by following the evolution
of a small perturbation of the jet, then rescaling the perturbation to a smaller
amplitude and starting the cycle again. The normal mode is then extracted, rescaled
and superimposed upon the zonal jet. The simulations typically use 60 points for x

and 40 for y with 80 levels in the vertical. We then vary the number of points and
keep the grid length constant in order to sweep the (F, k) space.

3.2. Unstable modes

3.2.1. Baroclinic instability

For large enough domains (F < 0.3 and k < 1) the classical baroclinic instability
occurs. Pressure and velocity fields correspond to Rossby waves in the lower and the
upper part of the front. The spatial structure of the modes is very close to those
found in the two-layer model (not shown). Growth rates are also very close to those
of the two-layer model, as can be seen in figure 10 for F < 0.3. It is worth reminding
that as is well known (see e.g. Holton 1992) the classical baroclinic instability leads
to a conversion of available potential energy to kinetic energy.

3.2.2. The RK modes

The first key question is to determine whether the RK instability is also present in
the continuously stratified case. The WRF simulations, as shown below, confirm the
existence of these modes in the continuously stratified case, for values of F and k

similar to those found in the two-layer model.
The RK modes of instability are indeed present in the stratified fluid, and their

structure is comparable to that found in the two-layer model. Figure 8 shows the
corresponding pressure and velocity fields vertically averaged below (θ < −0.5) and
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Figure 9. Velocity fields for the RK instability in the (y = 0)-plane for non-dimensional
parameters F = 0.8 and k = 2.4. Contours correspond to the meridional velocity with contour
intervals 0.009. The dash-dotted lines indicates the interval in which the zonal velocity is
between U =0.25 and U = 1.9, i.e. localization of the front zone. Note the relatively strong
vertical motion in the upper layer, indicating strong divergence of horizontal wind and hence
unbalanced motions.

above (θ > 0.5) the frontal zone. The structure of the geostrophically balanced Rossby
wave can be identified clearly below the front, and the structure of the Kelvin wave
(wind parallel to the boundaries, pressure extrema at the lateral boundaries) can be
identified above the front. In the horizontal plane, the signature of this mode is very
close to its counterpart in the two-layer model.

Figure 9 shows the velocity fields in the (x, z)-plane at y = 0. Two features should
be emphasized: Firstly, the modes clearly couple motions of very different nature, i.e.
balanced motions in the lower layer that are essentially non-divergent and unbalanced
motions in the upper layer that have significant signatures in the vertical velocity and
hence in the divergence of the horizontal wind. Secondly, the signature of the mode
is concentrated near the front. In other words, although the horizontal structure of
the mode when averaged over each layer (figure 8) is very close to that found in the
two-layer model, the motions are not at all homogeneous in the vertical in each layer.

3.2.3. Growth rates

The growth rates are evaluated from the growth of kinetic energy of the perturbation
over the whole domain. Figure 10 shows the corresponding non-dimensional growth
rates comparable to those found for the two-layer model (cf. Sakai 1989, figure 7).
The maximum growth rate of the instability attained for k = 2.5 is about σ = 0.09
scaled by f −1, so σ −1 = 1.25 days.

3.3. Sensitivity of the results

Below we describe how the RK instability is influenced by the choice of the thickness
of the frontal zone, by the value for the background stratification and, finally, by the
resolution.
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Figure 10. Growth rates of the instabilities of the front in the continuously stratified fluid.
The peak at low k corresponds to the standard baroclinic instability. The peak for larger k
corresponds to the RK instability.
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Figure 11. Growth rates for the RK mode of figure 8 for different basic stratifications. The
dotted line corresponds to Θz = 0, the dash-dotted line to Θz =1.45, the solid line to Θz = 2.9
and the dashed line to Θz = 5.8.

3.3.1. Stratification

To see whether the RK modes and their growth rates are sensitive to the background
stratification, simulations have been carried out for cases with no stratification, with
half stratification and double stratification, relative to the reference stratification
described above

Changing the basic stratification Θz in the initial potential temperature distribution
(cf. (3.1)) from Θz = 0 to Θz = 1.45, Θz = 2.9 and Θz =5.8 modifies the growth rates,
as can be seen from the figure 11. The maximum growth rate becomes smaller as the
stratification parameter becomes lower, and the RK instability shifts to a smaller k.
With a stratification weaker than in the reference simulation we were also able to find
a RK mode consisting of a Kelvin wave below the front and a Rossby wave above
for greater k. Corresponding pressure and velocity fields averaged above and below
the front are shown in figure 12. However, these modes are less robust and seem to
disappear as the background stratification increases.

3.3.2. Front thickness

In going from the two-layer fluid to a continuously stratified fluid with two well-
defined layers, the thickness of the transition between the two layers, i.e. of the front,
is a free parameter. It is essential to verify the sensitivity of the RK modes to the
sharpness of the front.

For the reference simulations described in § 3.2, a value of D =0.05 was chosen
for the front thickness (3.1). Simulations were also run for values of D ranging from



Ageostrophic instabilities of fronts in a channel in a stratified rotating fluid 499

x

y

y

0

0

0 1 2

–0.5

–0.5

0.5
(a)

(b) 0.5

Figure 12. Pressure and velocity fields for a RK instability vertically averaged (a) above the
front (θ > 0.5) and (b) below the front (θ < −0.5) for a simulation with half stratification and
non-dimensional parameters F = 0.87 and k = 2.6.
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Figure 13. Growth rates for the RK mode of figure 8 for different thicknesses of the frontal
zone. The values of D are 0.03 (dotted line), 0.04 (dash-dotted line), 0.05 (solid line) and 0.06
(dashed line).

0.03 to 0.06, in the interval of F and k likely to reveal the RK instability. The
simulations show that the RK modes are indeed quite sensitive to the thickness of
the front, as can be seen from the growth rates plotted in figure 13. The growth rates
increase significantly (up to a factor 2) as the front becomes sharper and decrease
for more diffuse fronts. Moreover, the range of wavenumbers k yielding instability is
reduced for more diffuse fronts. Simulations were also carried out for front thicknesses
D � 0.16 but did not exhibit robustly the presence of the RK modes or the growth
of any other unstable ageostrophic mode.

3.3.3. Resolution

As in any numerical study, the sensitivity of the results to resolution needs to be
checked. By definition, the initial front has regions of sharp vertical and horizontal
gradients (figure 7). Sharp gradients concentrated in the vicinity of the front are also
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Figure 14. Logarithm of the kinetic energy Kper of the perturbation for the RK instability
(normalized by initial total kinetic energy) for mode 1 in x, as a function of time. The
dashed line shows the energy evolution for the simulation with double resolution as described
in § 3.3.3.

found in the structure of the unstable modes (figure 9). Hence it is essential to verify
how sensitive the above results are to the resolution.

The simulations described above typically had a resolution of 60 points in x, 30
points in y and 80 points in z. Simulations have been run with a resolution doubled
relative to the reference run, and it was found that the linear stability results were
unchanged: the RK modes grew having the same structure and the same growth rate.
As an example, figure 14 shows the variation of kinetic energy with time for two
simulations with F = 0.8 and k =2.4, the first with a domain having 60 points in x, 30
points in y and 80 points in z, the second with twice as many points in all directions.
During the linear stage, the two curves overlap, indicating that the growth rate is not
sensitive to the resolution. The structure of the RK mode as described in figures 8
and 9 is also the same in both simulations. Hence, the results described above are
robust and not sensitive to the resolution.

4. Nonlinear evolution of the RK instability
Previous studies of ageostrophic unstable modes of fronts have addressed the linear

stability problem (Sakai 1989; Iga 1993). To understand the importance that such
ageostrophic modes may have in practice, it is necessary to investigate their nonlinear
development and in particular to answer two questions: Do they grow to significant
amplitudes? How do they saturate? The simulations carried out with WRF have the
advantage of providing the answers to both questions. Below we will focus on two
simulations with parameters F = 0.8 and k = 2.4: the reference run (as described in
the previous section) and the corresponding run with double resolution.

First, the overall signature of the instability in the energy budget is discussed (§ 4.1).
Second, the features of the flow that appear at the saturation of the RK modes are
described (§ 4.2). These are found to be small-scale structures localized near one of
the boundaries. Finally, the nonlinear effects due to the small-scale processes and
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Figure 15. Deviations of the total potential (solid) and kinetic energy (dashed) of the flow
during the growth stage of (a) the baroclinic instability (F = 0.2, k = 0.6) and (b) the RK
instability (F =0.8, k =2.4). Both energies are normalized by the initial total kinetic energy of
the flow.

their influence on the background mean flow is displayed (section 4.3), allowing for
interpretation of the saturation of the RK modes.

4.1. Saturation and energetics

We first discuss the growth of the RK instability looking at the kinetic energy of the
perturbation and then investigate the signature of the RK instability on the energetics
of the total flow. We define the kinetic energy of the perturbation as

Kper =

∫ ∫ ∫
1

2
ρ(u′2 + v′2 + w′2) dx dy dz, (4.1)

where u′ = u − 〈u〉 = u − (1/Lx)
∫ Lx

0
u dx. Energies are calculated dimensionally and

then scaled by the kinetic energy of the basic flow. In both runs the instability grows
exponentially up to t ∼ 40 and then saturates, as can be seen in figure 14. It can be
verified that the zonal wavenumber 1 mode (figure 8) is by far the most energetic.

To discuss the energy budget of the instability we define

K =

∫ ∫ ∫
1

2
ρ(u2 + v2 + w2) dx dy dz, P =

∫ ∫ ∫
ρ(gz + cvT ) dx dy dz, (4.2)

where K is the total kinetic energy of the flow and P is the total potential energy
obtained as the sum of the gravitational potential energy and the internal energy (see
Holton 1992, § 8.3). The total energy conservation is then written

d

dt
[K + P ] = 0. (4.3)

In practice, we do not expect that the total energy will be exactly conserved in the
simulations because of numerical dissipation. The deviations of potential and kinetic
energies from their initial values are shown in figures 15(b) for RK instability and,
for reference, 15(a) for baroclinic instability. While plotting the energy we used the
reference simulation (figures 8 and 9), but the energetics of the double resolution
simulation described in § 3.3.3 show a very similar behaviour.
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Figure 16. (a) Horizontal plot of the maximum along each vertical line of the y-component of
relative vorticity; (b) y-component of relative vorticity in the (x, z)-plane close to the northern
boundary (y =0.6) after the RK saturation (t =40 in figure 14). The dash-dotted lines indicate
the localization of the front as in figure 7.

In sharp contrast with the classical baroclinic instability (see Holton 1992), the
RK modes are found to convert kinetic energy of the basic flow into potential
energy. However, one must also note that the variations of energy due to the classical
baroclinic instability are stronger by a factor of 25. Hence RK instability has an effect
on the basic flow which is the opposite of that of baroclinic instability (conversion of
kinetic to potential energy), but the energies exchanged are much smaller.

Finally, one can note in figure 15 that the sum of potential and kinetic energies is
not exactly conserved for both simulations. For the case of baroclinic instability the
energy loss because of numerical dissipation represents about 15 % of the exchanged
energies. For RK instability, it represents 60 %. The difference is likely due to the
effective generation of the small-scale motions involved in the saturation of the
instability, as discussed below.

4.2. Small-scale instabilities

Inspection of the simulations shows that the saturation of RK instability involves
intense small-scale motions, developing near the lateral boundary to which the Kelvin
wave is attached. The highest resolution simulation as described in § 3.3.3 is used to
resolve this small-scale dynamics as well as possible. Figure 16 shows the relative
vorticity of the flow at the time when the amplitude of the perturbation is maximal
(t = 40). In addition to the zonal wavenumber 1 signature of the RK mode, intense
small-scale features are found near the northern boundary where the Kelvin wave
propagates. The small-scale features appear to be the result of the Kelvin–Helmholtz-
type shear instabilities. They are particularly intense in the frontal region and generate
quite intense vertical velocities above and below (not shown).

It is not surprising that the development of the RK modes leads to small-scale shear
instabilities in the region of the front. Because the instability robustly appears only
for sharp enough fronts (cf. § 3.3.2), the front in the basic state is already associated
with low Richardson numbers Ri = N2/(du/dz)2 < 0.5. Any motion will a priori
modulate the front and the associated Ri. During the growth stage of the instability
this will almost unavoidably lead to regions with Ri < 0.25, and shear instability
is likely to occur. It was verified in the simulation that the small-scale instabilities
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Figure 17. (a) Potential temperature deviation and (b) zonal mean flow deviation from the
initial state (figure 7) after the RK mode saturation (cf. figure 14). The contour intervals are
(a) 0.25 K m−1 and (b) 2 m s−1.

develop in regions in which Ri is minimal (less than 0.1), due to the compression
of the front associated with the RK mode. (Indications of this may be seen in
figure 16b.)

Now, the small-scale motions are only barely resolved: the horizontal resolution
of the simulation is about dx = 0.022, while the small-scale motions have a spatial
wavelength λx =0.125, which means about six grid points per wavelength. In the
reference run, similarly, their wavelength is about λx = 0.25, again corresponding to
about six grid points. To check the importance of the small-scale aspects of the
flow, we have investigated the sensitivity of our results to diffusion. We used the
standard second-order scheme for diffusion, in the horizontal directions alone or in
the horizontal and vertical directions. However, a crucial point to note is that the
front in the basic state is itself a small-scale feature and therefore is affected by the
diffusion. For too large values of the diffusivity, typically values of the related Reynolds
number less than Re ∼ 2000 (calculated based on the grid size), the diffusion of the
front precedes the development of RK instability. Comparatively, the development
of the classical baroclinic instability is much more robust and persists for Reynolds
numbers about Re ∼ 100 or less in our simulations. For larger values of the Reynolds
number, the diffusion was not found to alter significantly the dynamics described
above. Hence it appears that the dissipation introduced in the last simulations did
not have any significant effects on the small-scale dynamics involved in the saturation
of the RK instability.

4.3. Mean flow response

The saturation of the RK mode can be understood by describing the effect of
the small-scale motions on the mean zonal flow. These motions develop where the
RK mode most strongly modulates the front, i.e. on the lateral boundary to which
the Kelvin wave is attached. The modifications of the zonally averaged flow due
to the small-scale instabilities are shown in figure 17. The main modifications are
the broadening of the frontal zone and a deceleration of the zonal flow in the
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upper layer and near the northern boundary, i.e. where the Kelvin wave was most
intense.

As the velocities in the upper layer are reduced, conditions for the propagation of
Kelvin waves are significantly changed. It appears that this mechanism is sufficient
to break the conditions for the existence of the unstable mode, which essentially
disappears after it has saturated (cf. figure 14). Indeed as the zonal velocity of the
mean flow decreases close to the northern boundary of the upper layer, the Kelvin
wave has a greater phase speed. (It is propagating against the flow.) The Rossby wave
in the lower layer will keep the same phase speed, as the mean flow speed does not
change in the lower layer. Hence it will become more difficult to couple the two waves
by making the Doppler-shifted phase velocities coincide. The corresponding unstable
mode will have a weaker growth rate, if any.

In order to verify this point, the linear stability of the two-layer model was revisited
for a flow in which the velocity of the upper layer decreases near the appropriate
lateral boundary. It was found that the existence of the RK modes was indeed very
sensitive to the deceleration of the flow there and that the mode disappears if the
deceleration was sufficient, which supports our interpretation.

Simulations which exhibited an RK mode with the Kelvin wave in the lower layer
near the southern boundary provided further support for this interpretation. In these
simulations the small-scale instabilities lead to a broadening of the frontal zone and a
deceleration of the flow in the lower layer near the southern boundary, again changing
the propagation conditions for the Kelvin wave in a way such that the RK mode
disappears.

5. Summary
The linear stability of a front in a rotating, stratified fluid has been investigated with

a focus on the ageostrophic modes of instability. These are by construction absent
in the balanced models, such as the quasi-geostrophic approximation (e.g. Pedlosky
1987), and hence constitute an example of coupling of balanced and unbalanced
motions. Key questions regarding these modes are to determine their structure and
growth rates and to understand how they nonlinearly saturate.

Our starting point was the investigation by Sakai (1989) of the linear stability
of a front in a rotating two-layer fluid, confined between vertical walls and
horizontal surfaces. We have used a collocation method (Poulin & Flierl 2003) to re-
examine Sakai’s configuration and extend the results to more general configurations.
Configurations with layers of different depths exhibited two different families of RK
modes: one with the Kelvin wave in the top layer, the other with the Kelvin wave
in the bottom layer. When the two layers have sufficiently different depths, the two
regions separate, and hence a larger region of parameter space yields instabilities (cf.
figure 3).

The unstable modes appear significant because of their relatively large growth rates.
This is in contrast with ageostrophic unstable modes found for flows having constant
shear (Molemaker et al. 2005; Plougonven et al. 2005). However, as RK modes have
been previously exhibited only in the two-layer rotating shallow-water model, it was
necessary to confirm that these modes also exist in a continuously stratified fluid and
to investigate their sensitivity to the sharpness of the front. To answer these questions,
numerical simulations of the evolution of a sharp front in a stratified atmosphere
were carried out with an idealized configuration of the WRF model (Skamarock
et al. 2005). The considered background state was comparable to the two-layer
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model (sharp front confined by two lateral walls) but was more realistic in several
aspects (background mean stratification, upper boundary condition, compressibility).
Nevertheless, the RK modes were found to be present, demonstrating the robustness
of the ageostrophic modes identified using the two-layer model. For sufficiently sharp
fronts, the structure and growth rates of the modes were found to be comparable
to the ones found in the two-layer model. However, sensitivity experiments showed
that the growth rates of the modes were quite sensitive to the thickness of the
front: they developed only for fronts having non-dimensional thicknesses smaller
than 0.15.

Once the presence of the RK modes in the continuously stratified fluid was
established, their nonlinear behaviour was investigated with the following important
conclusions: (i) The modes grow to finite amplitude but retain energy levels that are
small relative to the energy levels reached by the standard baroclinic instability. (ii)
their saturation involves small-scale instabilities, presumably Kelvin–Helmholtz-type
shear instabilities, in the region in which the growing RK mode increases the shear
of the front sufficiently. These instabilities develop near the lateral boundary where
the Kelvin wave propagates. Their effect on the zonal flow is concentrated within
the frontal zone in the vertical and near the boundary where the Kelvin wave was
present in the horizontal. The deceleration of the flow there changes the conditions for
wave propagation and hence breaks the conditions for the existence of the unstable
mode, which essentially disappears. (iii) Although the details of the saturation may
not be entirely reliable due to resolution limitations, the effect of the unstable modes
on the energy budget is clear: contrary to the classical baroclinic instability, kinetic
energy is converted to potential energy. (In the simulations presented, about 2 %
of the kinetic energy is lost.) The fact that RK instability leads to a conversion
of kinetic energy to potential energy could be of particular interest in the oceanic
context (cf. Wunsch & Ferrari 2004). However, because the unstable modes are found
to saturate at small amplitude and because they are described here in a specific
configuration with lateral walls, its significance in the open water is to be further
investigated.

Further study of the stability of fronts is under way for related configurations – in
an axisymmetric annulus, with applications to laboratory experiments in mind, and
for a front that intersects either of the horizontal surfaces, with both oceanic and
atmospheric situations in mind.

The authors thank Jacques Vanneste for fruitful discussions and helpful suggestions
on this problem. The calculations were carried out at IDRIS, France. This work was
supported by ANR project FLOWINg (BLAN06-3 137005) and Alliance project
15102ZJ.
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