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Instabilities of Shallow-Water Flows with Vertical Shear

in the Rotating Annulus

Jonathan Gula1 and Vladimir Zeitlin2

6.1. INTRODUCTION

There is a long tradition of experiments in differen-
tially rotating annuli in order to understand the baroclinic
instability and, more generally, the instabilities of fronts
in geophysical fluid dynamics (GFD) [Hide, 1958; Fultz
et al., 1959; Hide and Fowlis, 1965; Hart, 1972]. Recently
the interest in such experiments was revived in the context
of the so-called spontaneous emission of inertia-gravity
waves by balanced flows (see Ford [1994], O’Sullivan and
Dunkerton [1995], and the references in the special collec-
tion of Journal of Atmospheric Sciences on this subject,
Dunkerton et al. [2008]). Thus, short-wave patterns cou-
pled to the baroclinic Rossby waves were observed in
independent experiments [Lovegrove et al., 2000; Williams
et al., 2005; Flór, 2007; Flór et al., 2011] on instabilities of
the two-layer rotating flows in the annulus at high enough
Rossby numbers.

On the other hand, the classical experiments on unstable
density (coastal) currents by Griffiths and Linden [1982]
also used annular geometry and a two-layer setting, with
lighter fluid overflowing the denser one in the rotating
tank. Recently, similar experiments, but with sloping bot-
tom, were performed by Pennel et al. [2012].

Motivated by all these experiments, we undertook a
thorough stability analysis of a two-layer shallow-water
system in the rotating annulus both with the rigid lid
and with a free surface and outcropping interface. Our
main goal in the rigid-lid configuration was to check to
what extent the ageostrophic short-wave instabilities in

1Institute for Geophysics and Planetary Physics, University of
California, Los Angeles, California, United States of America.

2Laboratoire de Météorologie Dynamique, École Normale
Supérieure; and Université Pierre et Marie Curie, Paris,
France.

shallow water may account for experimental observations.
In the outcropping configuration it was instructive to see
to what extent the simple two-layer shallow water-theory
reproduces the experiment.

The experiments mentioned above are not strictly
speaking shallow-water ones, although no pronounced
vertical structure was observed, as to our knowledge. The
results we present below may serve, nevertheless, to under-
stand the vertically averaged behavior of the full system.
Moreover, Williams et al. [2005] interpreted their exper-
iments in terms of shallow-water dynamics, referring to
Ford [1994]. As to the density currents, their instabilities
are traditionally studied with shallow-water models, as in
the classical paper by Griffiths et al. [1982]. Being stan-
dard in GFD, the two-layer shallow-water approximation
is a reasonable compromise between the realistic represen-
tation of the observed fluid flow and the computational
effort (and amount of resources) necessary for a full stabil-
ity analysis. It is, in addition, self-consistent and universal,
as, for example, the fine vertical structure of the flow may
vary from one experiment to another.

In Section 6.2 we present our results for the superrotat-
ing rigid-lid configurations (following Gula et al. [2009b],
where most of them were published). In Section 6.3 we
give new results for the free surface configuration with out-
cropping, and in Section 6.4 we analyze the influence of
bathymetry on the instabilities.

6.2. STABILITY OF FRONTS UNDER RIGID LID

A typical configuration used in laboratory experiments
by Williams et al. [2005] and Flór et al. [2011] is presented
in Figure 6.1. The annulus has an inner vertical sidewall
of radius r1, an outer vertical sidewall of radius r2, and a
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Figure 6.1. Schematic representation of a two-layer flow in the
annulus with a superrotating lid.

total depth 2H 0. The radial width of the annulus is there-
fore r2 − r1, and the two layers have equal depths H0 at
rest. The base and the lid are both horizontal and flat.
The angular velocity about the axis of symmetry is �,
and the upper lid is superrotating at � + ��. This dif-
ferential rotation provides a vertical velocity shear of the
balanced basic state that is close to solid-body rotation of
each fluid layer with different angular velocities. Such a
state will be represented in the stability analysis that fol-
lows by a cyclogeostrophic equilibrium in each layer, with
linear radial profile of the azimuthal velocity, within the
rotating two-layer shallow-water model. In order to ful-
fil a complete linear stability analysis, we use below the
collocation method.

Our analysis is purely inviscid; however, in the exper-
iment the mean axisymmetric flow is controlled by fric-
tion. As is well known [see, e.g., Hart, 1972], Ekman,
Stewartson, and shear boundary layers are present in the
two-layer rotating fluid in the tank, and the related torques
are acting upon the quasi-inviscid interior. Moreover, the
interfacial layer has an internal structure depending on
whether two fluids are immiscible or not (see Chapter 11).
All this internal structure will be neglected in what follows,
and the layers will be considered to be in solid rotation.

6.2.1. Equations of Motion, Basic States, and Linear
Stability Problem

Consider the two-layer rotating shallow-water model on
the plane rotating with constant angular velocity �. The
momentum and continuity equations are written in polar
coordinates as

Djuj −
(

f +
vj

r

)
vj − r�2 = −∂r�j,

Djvj +
(

f +
vj

r

)
ui = −∂θ�j

r
, (6.1)

Djhj + hj ∇· vj = 0,

where vj = (uj, vj), hj, and �j are velocity (radial,
azimuthal), thickness, and pressure normalized by density
(geopotential), respectively, in the jth layer (counted from
the top), j = 1, 2; f is the Coriolis parameter, f = 2�; and
Dj denote Lagrangian derivatives in respective layers. The
boundary conditions are u = 0 at r = r1, r2.

By introducing the time scale 1/f , the horizontal scale
r0 = r2 − r1, the vertical scale H0, and the velocity scale
V0 = fr0, we use nondimensional variables from now on
without changing notation. By linearizing about a steady
state with constant azimuthal velocities V1 �= V2, we obtain
the following nondimensional equations (the ageostrophic
version of the Phillips model in cylindrical geometry):

∂tuj +
Vj

r
∂θuj − vj − 2

Vjvj

r
= −∂rπj,

∂tvj + uj∂rVj +
Vj

r
∂θvj + uj +

Vjuj

r
= −∂θπj

r
, (6.2)

∂thj +
1
r

(
rHjuj

)
r +

1
r

Hj∂θ vj +
Vj

r
∂θhj = 0,

where the pressure perturbations in the layers, πj, are
related through the interface perturbation η as usual,

π2 − π1 + s(π2 + π1) = Bu η, (6.3)

and s = (ρ2 −ρ1)/(ρ2 + ρ1) is the stratification parameter,
Bu = (Rd/r0)

2 is the Burger number, Ro = ��/(2�) is
the Rossby number (as used in experiments, cf. Flór
et al. [2011]), Rd = (g′H0)

1
2 /(2�) is the Rossby deforma-

tion radius, and g′ = 2 �ρg/(ρ1 + ρ2) = 2sg is the reduced
gravity.

The depth profiles Hj(r) and respective velocities Vj(r)
in (6.2) correspond to a steady cyclogeostrophically bal-
anced state of the two-layer system that obeys the nondi-
mensional equations.

Vj +
V2

j

r
+

r
4

= ∂r�j, (6.4)

where the r/4 term corresponds to the centrifugal effect
at the interface, while the other terms correspond to the
classical cyclogeostrophic equilibrium.

The rotation rates of the layers lie in the interval
between the rotation rate of the base (0 in the rotating
frame) and that of the upper lid (Ro in the rotating frame).
Therefore, in general,

V2 = α2r, V1 = α1r (6.5)

and we get the following expressions for the heights of the
layers in the state of cyclogeostrophic equilibrium for such
mean flow:

Hj = Hj(0) + (−1)j[α2 + α2
2 − α1 − α2

1] r2

2 Bu

+ (−1)js[α2 + α2
2 + α1 + α2

1 + 1/2] r2

2 Bu
. (6.6)
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Hart [1972] considered the top, bottom, and interfacial
friction layers and found that the rotation rates are α1 =
(2 + χ) Ro/2(1 + χ) and α2 = Ro/2(1 + χ), where χ =
(ν2/ν1)

1/2 is the viscosity ratio between the two layers. If
the two layers have close viscosities χ = 1, it leads to
(α1, α2) = (0.75 Ro, 0.25 Ro).

A calculation based on a layerwise balance of the
torques in Williams et al. [2004] gives values for (α1, α2)

of the same order but depending on the turntable angular
velocity. The direct measurements of the radial veloc-
ity profiles by Flór [2007] are closer to (α1, α2) ≈
(0.9 Ro, 0.1 Ro). We will therefore keep these last values
throughout the chapter, but this particular choice means
no loss of generality, as changing the relative rotation rate
just means rescaling the Rossby number.

Supposing a harmonic form of the solution in the
azimuthal direction,

(uj(r, θ), vj(r, θ), πj(r, θ))

= (ũj(r), ṽj(r), π̃j(r)) exp[ik(θ − ct)] + c.c., (6.7)

where k is the azimuthal wave number (k ∈ N), and
omitting tildes we get, from (6.2),

k(Vj − rc)iuj − (r + 2Vj)vj + r∂rπj = 0,

−(r + Vj + r∂r(Vj))iuj + k(Vj − rc)vj + kπj = 0,

−∂r(rHjiu) + kHjv + k(Vj − rc)(−1)jη = 0,

π2 − π1 + s(π2 + π1) = Bu η .
(6.8)

The system (6.8) is an eigenproblem of order 6 that
can be solved by applying the spectral collocation method
[Trefethen, 2000].

The dispersion diagrams we thus obtain show that the
branches of dispersion relation corresponding to different
modes can intersect, leading to linear wave resonances and
thus creating instabilities of various nature [Cairns, 1979;
Sakai, 1989].

Following Cairns [1979] and Ripa [1983], the flow with
velocity U0 is unstable if there exists a pair of waves
with intrinsic frequencies ω̃1 and ω̃2 that satisfy the fol-
lowing conditions: The waves propagate in the opposite
directions with respect to the basic flow ω̃1ω̃2 < 0, mean-
ing that they have opposite energy anomalies, and have
almost the same Doppler-shifted (absolute) frequencies
(ω̃1 + kU0 ∼ ω̃2 − kU0) and thus can phase lock and
resonate. The interpretation of the unstable modes as
resonances between the neutral waves provides a classifi-
cation of different instabilities and corresponding regions
of parameter space.

Namely, we will display below the instabilities result-
ing from the resonance between Rossby waves in upper

and lower layers (the baroclinic instability), the resonance
between Rossby and Kelvin or Poincaré waves in respec-
tive layers (Rossby-Kelvin instability), and the resonances
between two Poincaré, or Kelvin and Poincaré, or two
Kelvin modes (Kelvin-Helmholtz shear instability). We
should recall at this point the physical nature of differ-
ent waves in the two-layer shallow-water system: Rossby
waves propagate due to potential vorticity gradients,
whatever their origin, Kelvin waves propagate due to
(and along) the boundaries in the rotating systems, and
Poincaré waves are inertia-gravity waves propagating due
to the density jump at the interface or at the free surface.
Although each instability occupies its proper domain in
the parameter space, we will see that there exist crossover
regions where two different instabilities coexist and may
compete.

6.2.2. Instabilities and Growth Rates

We first present the overall stability diagram in the space
of parameters of the model and then illustrate different
parts of this diagram by displaying the corresponding
unstable modes and dispersion curves. The stability dia-
gram was obtained by calculating the eigenmodes and the
eigenvalues of the problem (6.5), (6.8) for about 50,000
points in the space of parameters (there are typically 200–
300 points along each axis in the figures below) and then
interpolating. Only discrete azimuthal wave numbers cor-
respond to realizable modes. We nevertheless present the
results as if the spectrum of wave numbers were con-
tinuous for better visualization. They are synthesized in
Figures 6.2 and 6.3 displaying the growth rates and the
wave numbers, respectively, of the most unstable modes.
Both figures represent the plane of parameters Ro-Bu
(Figures 6.2 and 6.3). We also show in Figure 6.4 how
the dispersion diagrams evolve while changing parame-
ters and approaching the instability band spreading from
low left to upper right in Figures 6.2 and 6.3. One clearly
sees how the initially stable flow without imaginary eigen-
values of c develops instabilities of various nature as
parameters change. Thus, as shown in the left column of
Figure 6.4, decreasing the Burger number leads to dis-
tortion of the dispersion curves of Rossby modes and
their reconnection leading to Rossby-Rossby (RR) reso-
nance, i.e., the baroclinic instability. Different distortion
of dispersion curves of Rossby modes takes place if Ro
increases at constant Bu, leading to reconnection with
(a) a Kelvin-mode curve and Rossby-Kelvin (RK) reso-
nance with corresponding instability and (b) a Poincaré-
mode curve and Rossby-Poincaré (RP) resonance and
corresponding instability. Further increase in Ro leads to
reconnection of Kelvin-mode curves and Kelvin-Kelvin
(KK) resonance and related shear instability with features
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Figure 6.2. Growth rate of most unstable modes in (Ro, Bu) space. Darker zones correspond to higher growth rates. Contours
displayed are 0.001, 0.01, 0.02 and further interval at 0.02. The thick upper frontier line marks the outcropping limit when the
interface between the two layers intersects the bottom or the top. Adapted from Gula et al. [2009b].
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Figure 6.3. Wave number of most unstable modes in (Ro, Bu) space corresponding to Figure 6.2. Darker zones correspond to
higher wave numbers. The interval between subsequent contours is 1. Adapted from Gula et al. [2009b].

similar to the classical Kelvin-Helmholtz (KH) instability
[Paldor and Ghil, 1991]. Note that although KK, Kelvin-
Poincaré (KP), and Poincaré-Poincaré (PP) resonances
are physically different, they are frequently confused in
the literature and appear under the general name of KH
instability. Similarly RK and RP instabilities are often
both called RK [cf. Sakai, 1989]. We follow this simplified
convention.

In the context of wave resonances, there are three essen-
tial parameters in the problem: V = ��r0, the velocity

(or velocity shear) of the basic flow; CR = ��H/H0r0,
the characteristic phase velocity of the Rossby waves; and
CG =

√
g′H0, the characteristic phase velocity of the

gravity waves. The interpretation of the results may be
done on the basis of the alternative set of nondimensional
parameters defined as

F∗ =
V

CG
=

�� r0√
g′H0

,
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Figure 6.5. Dispersion diagram (upper panel) and growth rate
(lower panel) of the eigenmodes of the superrotating lid con-
figuration for Ro = 0.1 and Bu = 0.25 (see Figure 6.2a). Thick
gray line in the upper panel corresponds to the RR resonance
and respective unstable modes. Here and sunsequent figures
the subscripts “low” and “up” indicate a wave in the lower and
upper layer, respectively.

the Froude number, and

R∗ =
V
CR

=
g′H

2�2r2
0

,

a new Rossby number. With these definitions one finds
the baroclinic instability at small R∗ and KH instabilities
at large F∗, which matches the traditional view of these
instabilities. However, to keep a closer link with exper-
imental results of Williams et al. [2005] and Flór et al.
[2011], the discussion below is based on Bu and Ro. (For
more details, see Gula et al. [2009b].)

Thus, as for the ageostrophic Phillips model in a straight
channel [cf. Sakai, 1989; Gula et al., 2009a], several types
of instabilities are present, namely, (a) the baroclinic insta-
bility for small values of Bu and Ro (RR resonance), (b)
the Rossby-Kelvin instability (RK or RP resonance) for
intermediate values of Bu and Ro, and (c) the Kelvin-
Helmholtz instability (KK or KP resonance) for high
values of Bu and Ro. As usual, the KH instability is
characterized by highest growth rates and shortest wave-
lengths, the baroclinic instability is long-wave and low
growth-rate, and RK instability is intermediate, although
spanning a wide range of wave numbers.

In Figures 6.5–6.7 we give the dispersion diagrams cor-
responding to different values of (Ro, Bu) referring to typ-
ical cases (a), (b), (c), respectively, in Figures 6.2 and 6.3.
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Figure 6.6. Dispersion diagram (upper panel) and growth rate
(lower panel) of the eigenmodes of the superrotating lid con-
figuration for Ro = 1.5 and Bu = 3.5 (see Figure 6.2b). Thick
gray lines on the upper panel correspond to the RK and RP
resonances and respective unstable modes.
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Figure 6.7. Dispersion diagram (upper panel) and growth rate
(lower panel) of the eigenmodes of the superrotating lid config-
uration for Ro = 10 and Bu = 90 (see Figure 6.2c). Thick gray
lines on the upper panel correspond to the RK, KK, RP, and KP
resonances and respective unstable modes.

We present also in Figure 6.8 the structure of unstable
modes in both layers and the corresponding maps of the
interface deviation, which is an often measured quantity
in experiments.
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Figure 6.5 shows a dispersion diagram in the zone of
baroclinic instability. Two Rossby waves, one propagating
in each layer, are in resonance having the same Doppler-
shifted phase speed and giving rise to a baroclinic insta-
bility, as explained, e.g., in Hoskins et al. [1985]. The
structure of the unstable mode is shown in Figure 6.8a.

Figure 6.6 shows a dispersion diagram in the Rossby-
Kelvin instability area. The gravest radial Rossby mode
propagating in the upper layer resonates with a Kelvin
wave propagating in the lower layer and gives rise to the
dominant RK instability; see Sakai [1989] and Gula et al.
[2009a]. Resonances of higher Rossby modes with the
Kelvin wave give weaker RK instabilities, and the reso-
nance of a lower-layer Rossby mode with a Poincaré wave
gives the RP instability. The structure of the most unstable
RK and RP modes is shown in Figures 6.8b and 6.8c.

Figure 6.7 shows a dispersion diagram in a KH insta-
bility area. A Kelvin wave propagating in the upper layer
resonates with another Kelvin wave propagating in the
lower layer and gives rise to a KH instability. For these val-
ues of parameters we can see that RP and RK instabilities

are also present but with lower growth rates. The structure
of an unstable KK mode is shown in Figure 6.8d.

Thus RK and KH instabilities coexist for large Bu and
Ro having comparable growth rates although different
characteristic wave numbers. As follows from Figure 6.7
and from the comparison of Figures 6.2 and 6.3, in gen-
eral, close values of the growth rates may correspond
to essentially different wavelengths of the most unstable
modes. This means that different instabilities may coexist
and compete.

6.3. STABILITY OF OUTCROPPING
BUOYANCY-DRIVEN BOUNDARY CURRENTS

6.3.1. Equations of Motion, Basic States, Linearization
and Boundary Conditions

Another configuration used in experiments with the
rotating annulus is the free surface-outcropping one
[Griffiths and Linden, 1982; Pennel et al., 2012]. Note that
outcropping was excluded in the analysis of the previous
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Figure 6.8. Pressure and velocity fields in the upper (left) and lower (middle) layers and interface height (right) of (a) the baro-
clinically unstable RR mode at k = 2 (kRd = 0.9, see Figure 6.5), (b) the unstable RK mode at k = 4 (kRd = 7.5, see
Figure 6.6),
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Figure 6.8 Continued. (c) the unstable RP mode at k = 15 (kRd = 28, see Figure 6.6), and (d) the unstable KK mode at k = 10
(kRd = 95, see Figure 6.7). The full lines correspond to positive and the dotted lines to negative values. (a) Both fields are typical
of a Rossby mode. (b) The field in the upper layer is typical of a Rossby mode while the field in the lower layer is typical of a
Kelvin mode. (c) The field in the upper layer is typical of a Rossby mode while the field in the lower layer is typical of a Poincaré
mode. (d) Both fields are typical of a Kelvin mode.

section. So we consider now the situation where the inter-
face between the layers joins the free surface forming a
surface front, as shown in Figure 6.9. This is an idealized
configuration of a buoyancy-driven coastal current in a
circular basin. In the classical experiments by Griffiths and
Linden [1982], a volume of lighter salty water of density
ρ1 flows above a denser water of density ρ2 and is con-
fined between the surface front and the internal cylinder.
In the work of Thivolle-Cazat and Sommeria [2004] and
Pennel et al. [2012], the lighter fluid flows along the exter-
nal cylinder. In the following we consider an upper layer
of lighter fluid of density ρ1 with a free surface terminat-
ing at a point r = r0 = r1 + L with mean velocity U1(r)
and a lower layer of density ρ2 > ρ1 with a mean velocity
U2(r).

We work with the two-layer shallow-water equations in
the cylindrical geometry, as in the previous section, and
perform a cylindrical equivalent of the stability analy-
sis of Gula and Zeitlin [2010] and Gula et al. [2010] for

coastal currents. Another difference with the previous
section is that we now consider a free surface instead of
a rigid lid for the comparison with experiments. In this
section the slope of the bottom, γ , is set to be zero, its
influence to be studied in the next section.

By introducing the time scale 1/f , the horizontal scale
L, which is the unperturbed width of the density current,
the vertical scale H0 = H1(r1), and the velocity scale fL,
we use nondimensional variables from now on without
changing notation. Note that with this scaling the charac-
teristic value of the velocity gives the Rossby number. By
linearizing about a steady state in cyclogeostrophic equi-
librium, we obtain nondimensional equations identical to
equations (6.2), where the pressure perturbations in the
layers πj are now related through the layers’ heights hj via
the hydrostatic relations as follows:

∇πj =
Bu
2s

∇(δ
j−1
s h1 + h2). (6.9)
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Figure 6.9. Schematic representation of a two-layer outcrop-
ping flow in the annulus with linearly sloping bottom.

Here δs = ρ1/ρ2 is the density ratio, s = (ρ2 − ρ1)/(ρ2 +
ρ1) is the stratification parameter, and Bu = (Rd/r0)

2 the
Burger number.

The depth profiles Hj(r) and respective velocities Vj(r)
in (6.2) correspond to steady cyclogeostrophically bal-
anced states in each layer:

Vj +
V2

j

r
+

r
4

=
Bu
2s

∂r(δ
j−1
s H1 + H2). (6.10)

We look for solutions harmonic in the azimuthal
direction:

(uj(r, θ), vj(r, θ), πj(r, θ))

= (ũj(r), ṽj(r), π̃j(r)) exp [ik(θ − ct)] + c.c. (6.11)

The boundary condition of no normal flow at the coast is
the same as in the previous case for both layers, uj(r1) = 0.
The boundary conditions at the front for the upper layer
are

H1(r) + h1(r, θ , t) = 0, DtLR = v at r = LR(θ),
(6.12)

where r = r1+L is the location of the free streamline of the
basic state, LR(θ , t) is the position of the perturbed free
streamline, and Dt = ∂t + u∂r + v/r∂θ is the Lagrangian
derivative. Physically, they correspond to the conditions
that the fluid terminates at the boundary, which is a mate-
rial line. The linearized boundary conditions give (1) the
relation between the perturbation of the position of the
free streamline and the value of the height perturbation,

LR = − h1

H1r

∣∣∣∣
r=r1+L

, (6.13)

and (2) the continuity equation evaluated at r = r1 + L.
Hence, the only constraint to be imposed at the front for
the upper layer is the regularity of (u1, v1, h1 + h2).

We also have to ensure the continuity of pressure of the
lower layer across the front. In the region r > r1 + L with
no upper layer, the lower layer obeys the one-layer rotat-
ing shallow-water equations with (hydrostatic) pressure
proportional to the height of the fluid column. In what
follows we consider an outer cylinder to be far enough
from the front (r2 >> r0) so that its influence is negligi-
ble. Moreover, below we will limit ourselves, for technical
simplicity, only by the balanced component of π2, which,
in the leading order, in polar coordinates, satisfies the
equation [cf., e.g., Reznik et al., 2001]

1
r
∂r(r∂rπ2) +

(

k2 − 1

R2
d2

− k2

r2

)

π2 = 0, (6.14)

where Rd2 =
√

gH2/f is the Rossby deformation radius
of the lower layer. We thus impose the continuity of the
full solution for π2 in the inner region, r < r1 +L, with the
decaying balanced solution in the outer region, r > r1 +L,
at r = r1 + L. By this choice an unbalanced part of the
one-layer flow beyond the front, consisting of freely prop-
agating surface inertia-gravity waves, is discarded. We thus
loose possible resonances of the eigenmodes of the inner
flow with the outer inertia-gravity wavefield and related
radiative instabilities. For small to moderate Rossby num-
bers, which is the case of existing experiments, and our
case below, these instabilities are weak [cf. Zeitlin, 2008].
As we will see later, the stability analysis under these
assumptions reproduces the experiments well, which gives
an a posteriori justification.

Injecting (6.11) into (6.2) and (6.9), we obtain an eigen-
value problem of order 6 that can be solved by applying
the spectral collocation method along the same lines as
in the previous section. In what follows, we will first con-
sider the simplest case of a bottom layer initially at rest
(U2 = 0) and an upper flow with a constant rotation rate
U1 = αr.

6.3.2. Resonances and Instabilities

As in the configuration of Section 6.2, the instabili-
ties in the outcropping case originate from resonances
between the eigenmodes of the linearized problem. As
in the previous section, the wave species are Poincaré
(inertia-gravity) modes, Rossby modes (if PV gradients
are present), and unidirectional Kelvin modes trapped at
the boundary. Additional ingredients in the outcropping
configuration are the frontal modes trapped in the vicinity
of the free streamlines (outcropping lines). These modes
are described in Iga [1993] as mixed Rossby-gravity waves
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Figure 6.10. Dispersion diagram (upper panels) and growth rate (lower panels) of the eigenmodes of the outcropping configuration
for (a) Ro = 0.02, (b) Ro = 0.2, and (c) Ro = 0.6 with δH = 0.1. Thick gray lines on the upper panel correspond to the unstable
modes.

in the sense that they behave like Rossby modes as long as
the wave number is small and like gravity modes when the
wave number becomes large. Note that Hayashi and Young
[1987] and other authors refer to these modes as Kelvin
waves, as they propagate along the (internal) boundary.
More generally, the frontal mode can be interpreted as a
vortical mode, as in the work of Meacham and Stephens
[2001], Gula and Zeitlin [2010], and Gula et al. [2010], in
a sense of a wave that exists due to the PV gradient at
the outcropping point, because this point may be inter-
preted as a point connecting the finite-depth layer with

a layer of infinitesimal thickness [Boss et al., 1996]. We
use the denomination “frontal” for such modes in what
follows.

Figure 6.10 shows the dispersion diagram and cor-
responding growth rates of the eigenmodes of the
outcropping coastal flow with a depth ratio δH = H1(r1)/

[H1(r1) + H2(r1)] = 0.1 and a density ratio δs = ρ1/ρ2 =
0.99 as a function of k for increasing values of vertical
shear: Ro = 0.02, Ro = 0.2, and Ro = 0.6.

For low Rossby and Burger numbers (Figure 6.10a),
Rossby modes in the lower layer with c ≈ U2 = 0 can
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resonate with Rossby modes in the upper layer with c ≈
−U0. This is the standard mechanism of the baroclinic
instability, as explained in the previous section, which
occurs for wave numbers kRd < 1. The corresponding
pressure and velocity fields in both layers are plotted in
Figure 6.11a. Both fields are typical of a Rossby mode.
Rossby modes in the lower layer can also resonate with
the frontal mode in the upper layer (RF interaction). The
frontal mode has the characteristics of a Rossby wave for
low wave numbers, and the unstable mode under consid-
eration is therefore very similar to the classical baroclinic
instability (RR). The corresponding pressure and velocity
fields in both layers are plotted in Figure 6.11b.

For higher Rossby and Burger numbers (Figures 6.10b
and 6.10c), the Rossby-Rossby interaction is not allowed
anymore as the horizontal extension of the surface cur-
rent is too small compared to the Rossby deformation
radius. The RF mode is the primary unstable mode
with wave numbers kRd ≈ 0.5 ÷ 1. The second instability

in Figure 6.10b corresponds to the first Poincaré mode
in the upper layer resonating with a Rossby wave in
the lower layer. The pressure and velocity fields for
this mode are plotted in Figure 6.11c, and confirm this
interpretation. Note that the same instability appears
at higher k for Poincaré modes of higher order with
decreasing growth rates (Figure 6.10c). This is the RP
instability.

A new dispersion curve kc = 1 denoted by I in the
Figures 6.10b and 6.10c also appears. It corresponds to
inertial motion in the lower layer, with the quiescent upper
layer. The absence of pressure variations is typical for
inertial oscillations. This mode was already discussed by
Paldor and Ghil [1991] and Gula et al. [2010]. In spite
of intersections of this curve with other branches of the
dispersion diagram, no resonances and hence no instabil-
ities between the inertial motion and other modes arise
due to its pressureless character. Indeed, pressure fluc-
tuations are required for the instability to arise [Cairns,
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Figure 6.11. Pressure and velocity fields of the upper (left) and lower (middle) layers and interface height (right) of (a) the unstable
RR mode for Ro = 0.02 and k = 5 (kRd = 0.6, see Figure 6.10a), (b) the unstable Rossby-frontal (RF) mode for Ro = 0.2 and k = 2
(kRd = 0.6, see Figure 6.10b),
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Figure 6.11 Continued. (c) the unstable RP mode at k = 21 (kRd = 7.5, see Figure 6.12b), and (d) the unstable frontal-Poincaré
mode at k = 40 (kRd = 23, see Figure 6.10c). Full lines: positive; dotted lines: negative values.

1979] as the coupling between the layers, necessary for
the resonance between upper and lower layer waves, is
achieved through pressure (cf. the instability criterion in
Sakai [1989]).

It should be emphasized that resonances involving the
Kelvin mode at the inner boundary, in contradistinction
with the previous section and the results of Gula and
Zeitlin [2010] and Gula et al. [2010], are never of sig-
nificant impact in the present configuration, where the
vertical shear at the inner cylinder is small compared to
the shear at the location of the front.

Figure 6.12 shows the dispersion diagram and corre-
sponding growth rates for a larger depth ratio δH =
H1(r1)/[H1(r1) + H2(r1)] = 0.5 and a density ratio s =
ρ1/ρ2 = 0.99. Comparison of Figures 6.10 and 6.12 shows
that the unstable modes become more and more vigorous
when the depth ratio increases. For high Rossby numbers,
a new zone of instabilities with high growth rates appears
at very high wave numbers. They are due to the interac-
tion of the frontal mode in the upper layer with various
Poincaré modes in the lower layer (FP1). Such short-wave

instability is analogous to the one described by Paldor
and Ghil [1991] for the zero-PV case and by Gula et al.
[2010] for the constant-PV case in the planar geometry.
The frontal mode having the characteristics of a gravity
wave for high wave numbers, this instability is therefore
very similar to the vertical shear instabilities, which we
have seen previously (KK, KP, or PP). The pressure and
velocity fields for the first Poincaré mode in the lower layer
and the frontal mode in the upper layer are plotted in
Figure 6.11d.

Barotropic interactions in the upper layer, as stud-
ied by Gula and Zeitlin [2010] in the rectilinear case,
are not present in this analysis due to the absence of
both horizontal potential vorticity gradient and cur-
rent reversal in the upper layer, which would allow
Rossby-Frontal or Kelvin-Frontal barotropic interac-
tions, respectively. These interactions are usually absent
in experimental studies, as mentioned above, due to
the lack of surface forcing, which would allow for
stronger horizontal shear in the equilibrium state. Exper-
iments realized through geostrophic adjustment of a
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Figure 6.12. As in Figure 6.10, but with δH = 0.5. Thick gray lines in the upper panel correspond to the unstable modes.

constant-PV layer will, in general, have low Rossby and
Burger numbers and, therefore, correspond to the RF
regime.

6.3.3. Comparison with Experiments

The experiments of Griffiths and Linden [1982] were
conducted in a circular tank mounted on a rotating
turntable, as in Figure 6.9, filled with a solution of den-
sity ρ2. The boundary current was created by inject-
ing a lighter solution of density ρ1 between the inner
cylinder and a bottomless cylinder of radius rc such
as r1 < rc < r2. The experiment was then initiated by

vertically withdrawing this cylinder and allowing the
upper layer (height h0 and width L0 = rc − r1) to move
under the influence of buyoancy, Coriolis, and centrifugal
forces.

The upper layer is stationary before the geostrophic
adjustment and therefore has constant potential vorticity.
Under the assumption of no diabatic mixing taking place
during the collapse, potential vorticity in the upper layer
should be conserved in the final balanced state and is then
written as

Q1 =
f + ∂rV1 + V1/r

H1
=

f
h0

. (6.15)
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Figure 6.13. (a) Initial experimental state (dashed line) and basic state height after reaching cyclo-geostrophic equilibrium (thick
line) for F0 = 1.4 and δ0 = 0.95. (b) Dispersion diagram (upper panel) and growth rate (lower panel) of the eigenmodes. Thick
gray lines in the upper panel correspond to the RF and RP resonances and respective unstable modes.

The steady cyclogeostrophically balanced state in each
layer is given by (6.10). Assuming a bottom layer initially
at rest in the rotating frame, the basic state velocity in the
upper layer is then given by the solution of the following
ordinary differential equation (ODE):

V1rr +
V1r

r
− V1

r2 − f
h0g(1 − δs)

(

fV1 +
V2

1

r

)

= 0,

(6.16)

with

V1r(r1) = 0, H1(r1 + L) = 0. (6.17)

We have solved (6.16) numerically using Runge-Kutta
method. The results of these calculations for two sets of
parameters are shown in Figures 6.13a and 6.15a.

We use the parameters of Griffiths and Linden [1982],
F0 = f 2L2

0/g′h0, the Froude number, and δ0 = h0/H,
the initial depth ratio. We plot for comparison two cases
corresponding to (a) F0 = 1.4 and δ0 = 0.95 (the disper-
sion diagram is shown in Figure 6.13 and the structure
of the most unstable mode in Figure 6.14) and (b) F0 =
14.4 and δ0 = 0.19 (the dispersion diagram is shown in
Figure 6.15 and the structure of the most unstable mode in
figure 6.16). Photographs of the corresponding laboratory
experiments (Figures 3 and 4, respectively in [Griffiths and
Linden, 1982]) are reproduced in Figures 6.14d and 6.16d,

and one can see a perfect agreement with the observed
wave numbers for these experiments.

In both cases the most unstable wave number corre-
sponds to the RF mode. The Rossby eigenmodes are
absent in the upper layer owing to the uniformity of PV. As
seen from the comparison with equation (6.10), the corre-
sponding set of dispersion curves c ≈ −U0 is absent in
Figures 6.13 and 6.15. However, as was already discussed
in the previous section, the frontal mode has the character-
istics of a Rossby wave for low wave numbers, and the RF
mode is therefore very similar to the classical baroclinic
instability.

Photographs of the laboratory experiments (Figure
6.14d and 6.16d) show the instability at a later nonlin-
ear stage as compared to the initial linearly growing stage
computed by linear analysis. The nonlinear evolution of
the RF instability in the rectilinear two-layer shallow-
water model was simulated by Gula et al. [2010]. The
frontal disturbances were observed to evolve in agree-
ment, modulo rectilinear geometry, with the sequence of
photographs of Griffiths and Linden [1982], and ultimately
led to the formation and detachment of outward propa-
gating cyclone-anticyclone vortex pairs, as observed in the
work of Griffiths and Linden [1982] and Thivolle-Cazat and
Sommeria [2004].

The stability analysis has been repeated for different
values of the inner cylinder radius r1 (not shown) and
reproduces the results of Griffiths and Linden [1982],
demonstrating a small influence of this parameter and
hence of the wall in such a configuration. It is interesting
to note that the RF instability was interpreted, even for
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Figure 6.14. Pressure and velocity fields of (a) upper and lower (b) layers and (c) interface height of the baroclinically unstable
mode at k = 9 (kRd = 14.5, see Figure 6.13). Full lines: positive; dotted lines: negative values. The field in the upper layer is typical
for a frontal mode, while the field in the lower layer is typical for a Rossby mode. (d) Photograph of the corresponding experiment
adapted from Griffiths and Linden [1982].
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Figure 6.16. Pressure and velocity fields of the upper (a) and lower (b) layers and (c) interface height of the baroclinically unstable
mode at k = 17 (kRd = 5, see Figure 6.15). Full lines: positive; dotted lines: negative values. The field in the upper layer is typical
for a frontal mode, while the field in the lower layer is typical for a Rossby mode. (d) Photograph of the corresponding experiment
adapted from Griffiths and Linden [1982].

small Rossby numbers, as ageostrophic by many authors,
because the uniform PV in the upper layer does not satisfy
the Charney-Stern theorem of the PV gradient inversion
between the two layers. Yet, it is still possible to inter-
pret it as generalized quasi-geostrophic instability; see a
discussion of this point by Boss et al. [1996].

6.4. IMPACT OF BATHYMETRY
ON INSTABILITIES

In this section we study the impact of bathymetry in a
form of a constant-slope shelf on the stability of the flow.
We use the same set of equations and parameters as in the
previous section with the addition of a bottom topogra-
phy with height Ht(r). Following Pennel et al. [2012], we

define a topography parameter To as the ratio of the shelf
slope γ to the isopycnal slope α,

To =
γ

α
, (6.18)

where α is defined as the slope of the interface between
the layers at the location of the front. The parameter To
has been found relevant for quantifying the shelf impact
on the surface current (Pennel et al. [2012]), as was previ-
ously suggested by works in the quasi-geostrophic Phillips
model. Positive values of To, as in Figure 6.9, correspond
to isopycnal and shelf slopes in the same direction, which
is typical of upwelling events along the coast of western
boundary currents. Negative values of To correspond to
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Figure 6.17. Growth rate of the most unstable modes as a function of the topography parameter To for (a) Ro = 0.02 and
(b) Ro = 0.2 with δH = 0.1

isopycnal and shelf slopes in the opposite directions and
are typical of buoyant coastal currents.

In order to study the influence of the topography on the
stability of the current and to vary the parameter To with-
out changing other parameters, we will define the aspect
ratio between the two layers as δH = H1(r1)/H2(r1 + L)

and keep it constant while varying the topography height.
The novelty of the configuration with nontrivial topog-

raphy is that the latter allows for specific topographic
waves, in addition to frontal, Kelvin, Rossby, and Poincaré
waves discussed above. These waves may resonate with

other types of waves and thus lead to new instabilities.
On the other hand, topography changes the propagation
speed of these waves and may thus “detune” the reso-
nances, leading to stabilization of the flow. We observe
both effects, depending on To.

Figure 6.17 shows the growth rates of the most unsta-
ble modes as a function of To and nondimensional wave
number for the set of parameters used in the disper-
sion diagrams of Figures 6.10a, 6.10b, and 6.12c. In all
cases there is a strong stabilization of the flow for a pos-
itive To, with growth rates vanishing for To close to 1
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Figure 6.18. Dispersion diagram (upper panel) and growth rate (lower panel) of the eigenmodes for: (a) Ro = 0.2 and To = −2
and (b) To = −5. Thick black lines in the upper panel correspond to the TF and TR resonances and respective unstable modes.
Gray lines in both panels correspond to the same case with no topography (Figure 6.10b).

(topography almost parallel to the interface). It is clear
from the expressions for the PV gradient in the lower layer,

∂rQ2 = −f
∂rH2

H2
2

, (6.19)

and for the topography parameter,

To =
∂rHt

∂rH2 + ∂rHt

∣∣∣∣
r1+L

, (6.20)

that To → 1 will imply ∂rQ2 → 0, which explains the
stabilization.

In Figure 6.18 we present the stability diagrams at two
different negative values of To at Ro = 0.2 showing
that the most unstable modes in such configurations are
due to the resonances of a frontal wave with a topo-
graphic wave (either the first T1 or the second T2 radial
mode), although the resonances of the first topographic
mode with a Rossby wave are also observed. Figure 6.19
displays the corresponding unstable modes. Thus, topog-
raphy plays a crucial role in the destabilization of the flow
in this regime.

6.5. SUMMARY AND DISCUSSION

We thus performed a stability analysis of the shear
flows in the rotating annulus in the framework of the
two-layer shallow-water model in the wide range of

parameters, both in the superrotating rigid-lid and free-
surface outcropping configurations, including topography
effects in the latter case. We got a detailed structure of
the unstable modes to be compared with the experimen-
tal results in these configurations. Such a comparison
shows a good agreement with the density-current exper-
iments. The experiments with two-layer fluid with super-
rotating lid do show the RK instability as follows from
the analysis of Flór et al. [2011], with good quantita-
tive agreement with two-layer shallow-water results, while
short-wave structures on the background of Rossby waves,
which were observed in experiments of Williams et al.
[2005] and Flór [2007]), do not find a direct explana-
tion in terms of dominant unstable modes that we found.
This means that these short-wave structures are prob-
ably due to the fine vertical structure of the interface
between the layers, which does not exist in the shallow-
water approximation (see a discussion by Flór et al. [2011]
on this subject as well as Chapter 11 in this volume).
Our results on the influence of topography on the insta-
bilities show that in the case of opposite orientations
of the isopycnal and shelf slopes the destabilization of
density currents is due to resonances of Rossby and topo-
graphic waves, and thus the influence of topography may
be crucial.
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Figure 6.19. Pressure and velocity fields of the upper (left) and lower (middle) layers and interface height (right) of the most
unstable mode for Ro = 0.2 and (a) To = −2 (see Figure 6.18a) and (b) To = −5 (see Figure 6.18b). Full lines: positive; dotted
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