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ABSTRACT

A submesoscale filament of dense water in the oceanic surface layer can undergo frontogenesis with a

secondary circulation that has a surface horizontal convergence and downwelling in its center. This occurs

either because of the mesoscale straining deformation or because of the surface boundary layer turbulence

that causes vertical eddymomentumflux divergence or, more briefly, vertical momentummixing. In the latter

case the circulation approximately has a linear horizontal momentum balance among the baroclinic pressure

gradient, Coriolis force, and vertical momentum mixing, that is, a turbulent thermal wind. The frontogenetic

evolution induced by the turbulent mixing sharpens the transverse gradient of the longitudinal velocity (i.e., it

increases the vertical vorticity) through convergent advection by the secondary circulation. In an approximate

model based on the turbulent thermal wind, the central vorticity approaches a finite-time singularity, and in a

more general hydrostatic model, the central vorticity and horizontal convergence are amplified by shrinking

the transverse scale to near the model’s resolution limit within a short advective period on the order of a day.

1. Introduction

Awidespread appreciation has emerged and grown in

the past several years for how active the regime of

submesoscale currents is within the oceanic surface

layer. Examples are density fronts and filaments, their

instabilities, coherent vortices, vertical material fluxes,

and a forward energy cascade to an enhanced dissipation

rate. Mesoscale eddies are the energy source for sub-

mesoscale flows and density gradients, and strain-

induced frontogenesis is a process that can shrink the

horizontal scale of density gradients at a super-

exponential rate. Fronts—a transverse horizontal step

in surface density across an elongated longitudinal

axis—have a long history of investigation, both dy-

namically (Hoskins 1982) and observationally (e.g.,

Rudnick and Luyten 1996; Rudnick 1996). Filaments—

a transverse horizontal extremum in surface density—

have analogous dynamical processes (Hakim et al.

2002; Lapeyre and Klein 2006; McWilliams et al. 2009b)

but have perhaps less often been observed; examples

are detection in satellite images (e.g., probably the

spiral arms in cyclonic surface vortices; Munk et al.

2000) and the ‘‘streamers’’ documented in Rudnick

and Luyten (1996). Because of the central surface

convergence and downwelling in the strain-induced

secondary circulation (Fig. 1), dense filaments have a

stronger frontogenetic rate than do fronts, and light

filaments have a reverse secondary circulation, hence

an even weaker frontogenetic rate, and thus are likely

to be weaker and rarer in the ocean. Both fronts and fil-

aments are subject to rotating, stratified, momentum-

balanced (i.e., barotropic and baroclinic) instabilitieswith

finite longitudinal wavenumbers (McWilliams et al. 2009a;

Gula et al. 2014).

An outstanding question is how frontogenesis is

arrested at some finite horizontal scale while the

straining deformation persists; if it is not by one of the

balanced instabilities (McWilliams and Molemaker

2011), then it might be by other smaller-scale in-

stabilities as part of the boundary layer turbulence.

When the turbulent flux is parameterized with a finite

horizontal eddy viscosity, then of course an arrest might

occur diffusively, but this is just a surrogate for the true

arrest process.

Most theoretical studies of fronts and filaments have

been made with conservative dynamics; that is, less

attention has been given to the effect of the surface

boundary layer turbulence that usually occurs simul-

taneously. Garrett and Loder (1981) determines an
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approximate secondary circulation due to vertical

mixing1 near a front and shows that it leads to a dif-

fusive horizontal relaxation of the tilted isopycnal

depths with, however, some local frontogenetic sharp-

ening due to nonuniform stratification or eddy vis-

cosity. Nagai et al. (2006) shows how the frontal

secondary circulation pattern and strength vary with

the vertical mixing parameters. Thomas and Lee

(2005) shows that the vertical mixing associated with a

down-front wind has a frontogenetic effect through the

secondary circulation.

In the absence of nonconservative mixing or strain-

ing deformation, an isolated filament, once formed,

can be in a hydrostatic, geostrophic, and stationary

state. This paper is a study of the evolution of an iso-

lated, two-dimensional (2D), dense filament due to the

boundary layer turbulence from surface wind stress

and parameterized as the vertical mixing of buoyancy

and momentum. The result is that the vertical mixing

itself causes a further horizontal frontogenesis through

the induced secondary circulation, which continues

(in this 2D model) down to an arrest by the modeled

diffusion at an approximately isotropic aspect ratio

with the transverse scale comparable to the boundary

layer depth.

In the following sections, an illustration is presented

of filament buoyancy structure, vertical mixing, and

circulation from a realistic oceanic simulation (section

2); turbulent thermal wind balance is defined and solved

(section 3); an idealized filament with turbulent thermal

wind balance and its implied frontogenetic tendency are

evaluated (section 4); the time evolution of an idealized

filament is solved for and analyzed (section 5); an ap-

proximate, balanced model of filament frontogenesis is

educed that exhibits a finite-time singularity (section 6);

and the results are summarized with an additional dis-

cussion of future research directions (section 7).

FIG. 1. Sketch of a two-dimensional dense surface filament undergoing frontogenesis in an

external horizontal deformation flow with uniform horizontal strain rate (›xu 2 ›yy; dotted–

dash arrows). Buoyancy contours [b(x, z) 5 g(r0 2 r)/r0; heavy solid lines] bulge up in the

center, as labeled by ‘‘light’’ and ‘‘heavy.’’ The approximately geostrophic longitudinal flow

y (thin arrows) is a double jet. The ageostrophic secondary circulation (u, w) in the transverse

plane (thick arrows) has central downwelling and peripheral upwelling, surface horizontal

convergence, and subsurface horizontal divergence. Vortex stretching generates cyclonic

vertical vorticity in the center and weaker anticyclonic vorticity on the edges. (Adapted from

McWilliams et al. 2009b.)

1 Small-scale turbulence causes both horizontal and vertical eddy

fluxes (i.e., mixing), of course. However, if the density and circu-

lation structure has a small vertical/horizontal aspect ratio, while

the turbulence is more nearly isotropic, then the horizontal mixing

will have a much smaller effect on the structure. If frontogenesis

occurs in such a way as to increase the aspect ratio, then at some

time the horizontal mixing may become important, but this latter

phase is not investigated in this paper (section 5b).
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2. Filament example in a realistic simulation

Computational simulations exhibit abundant pop-

ulations of submesoscale surface fronts and filaments

that arise in the presence of mesoscale eddies and

boundary currents when the horizontal resolution is fine

enough (Dx ; 1km; e.g., Capet et al. 2008a). To

establish a context for the theoretical problem that

follows, an example is taken from recent, realistic sim-

ulations of the Gulf Stream (Gula et al. 2014) made

with the Regional Oceanic Modeling System (ROMS)

(Shchepetkin andMcWilliams 2005, 2008). Dense (cold)

filaments frequently occur on the offshore edge of the

stream. They have a typical life cycle of frontogenesis

starting from mesoscale buoyancy gradients, barotropic

instability, filament fragmentation, and filament disap-

pearance, all occurring within an interval of about a day.

The strong mean and mesoscale currents in the stream

provide the strain for the filament frontogenesis.

An example taken at a time shortly before the onset

of the barotropic instability is shown in Figs. 2–3. The

first figure shows a transverse cross section of the

buoyancy field b(x, z) with some along-axis y averag-

ing to smooth out various fluctuations, for example,

internal waves. The b structure is a dense surface

anomaly in the filament center within the well-mixed

layer that weakens on the sides and down into the

pycnocline. It has an associated boundary layer depth

h(x) that is deepest in the center, where the stratifi-

cation is weakest, and decreases to the sides, with

even a weak minimum depth (called a dimple) on the

near edges of the filament. In the simulation model, h

is determined independently within each vertical

column as part of the K-profile parameterization

(KPP; Large et al. 1994; McWilliams et al. 2009c) for

the vertical eddy viscosity and diffusivity profiles ny(z)

and ky(z) within the surface turbulent boundary layer.

The cross-sectional distribution of ny(x, z) closely

FIG. 2. Temporal snapshot of (left) b(x, z) and (right) ny(x, z) for a filament in the Gulf Stream in a realistic ROMS

simulation (Gula et al. 2014). These fields are averaged along the filament axis for a distance of 45 km. The black line

denotes the boundary layer depth at z52h(x). Here, b has been detrended across the 34-km domain in x at each z.

FIG. 3. Velocity fields (left) u0(x, z), (middle) y0(x, z), and (right)w(x, z) for the same filament snapshot as in Fig. 2 (Gula et al. 2014). The

black line denotes the boundary layer depth at z52h(x). The anomaly u0 is relative to z52H, and it has had its xmean (across the 34-km

domain plotted in Fig. 2) removed at each height. The anomaly y0 is relative to z52H, and it has had its geostrophic mean value removed at

each height, that is,
Ð z

2Hh›xbi dz/f , where the angle brackets are an average in x and h›xbi is the slope of the trend removed from b in Fig. 2.

1990 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



follows that of h. This to be expected because, in KPP,

ny is proportional to h times a turbulent velocity scale

set by the surface momentum and buoyancy fluxes,

and the surface fluxes have a larger horizontal (and

temporal) scale of variation than does the filament

itself. The field ky (not shown) has a similar structure.

These fields are approximately even symmetric across

the center.

The contemporaneous velocity field in Fig. 3

shows a double-jet structure in the longitudinal ve-

locity y(x, z), which is what is expected from geo-

strophic balance with b(x, z). (Some removal of

spatial means and trends is performed to bring out the

local filament structure; this is described in the cap-

tion.) The secondary circulation in u(x, z) and w(x, z)

is composed of two cells with surface inflow and

horizontal convergence, central downwelling, outflow

and divergence at depth, and weaker upwelling on

the sides. This is the same pattern that is associated

with strain-induced frontogenesis of a filament

(McWilliams et al. 2009b), and some of it in the case

here may be due to this cause. Nevertheless, as

demonstrated in Gula et al. (2014), the primary

horizontal momentum balance in this filament is

among the Coriolis force, vertical momentum mixing,

and the baroclinic pressure gradient force associated

with the b anomaly, that is, not including the accel-

eration or the advection that, among its other effects,

contains the mesoscale straining deformation. This

type of approximate momentum balance is a combi-

nation of geostrophic and Ekman balances and is

called the turbulent thermal wind (TTW; section 3).

The maximum vertical vorticity (i.e., z’ ›xy when the

along-axis variations are small) normalized by f has a

cyclonic value of 5.3 in the center of this filament

example; that is, the local Rossby number Ro 5 z/f

is large.

3. Turbulent thermal wind

Submesoscale flow structures are often identified by

their b(x) structure, in part because temperature mea-

surements are among the most accessible, both on ships

and from satellites. What kind of circulation inference

can be made from b?

A quasi-steady linear momentum balance that

combines hydrostatic, geostrophic, and Ekman

boundary layer dynamics is called TTW [note that this

term was introduced in Gula et al. (2014)]. For a

horizontal shear vector s(z)5 ›zu?(z) in the presence

of a horizontal buoyancy-gradient profile $?b(z) and
sea level elevation h, with a vertical eddy viscosity

profile ny(z) and a surface wind stress ts, the TTW

problem is

f ẑ3 s52$?b1 ›2z[nys] , (1)

with boundary conditions

nys5
ts

ro
at z5h,

s/ sg as z/2‘ , (2)

where the interior geostrophic shear profile is

sg(z)5
1

f
ẑ3$?b . (3)

The subscript ? denotes a horizontal vector in the

(x, y) plane. The vertical coordinate is z, and ẑ is the

unit vertical vector. The associated TTW horizontal

velocity is

u?(z)5
ðz
zi
s dz0 1 ugi , (4)

and ug is its geostrophic counterpart with sg. The

ageostrophic TTW component

ua5 u? 2 ug (5)

contains the secondary circulation (u and w) for a 2D

frontal or filamentary flow. By the second condition in

(2), ua vanishes going down into the interior. The depth

zi is an interior reference level where the geostrophic

velocity is ugi. This TTW system is a 1D elliptical

boundary-value problem in z, in which the (x, y, t) de-

pendencies are parametric.

Given a 3D solution field for TTW u?, the continuity

equation yields a TTW vertical velocity:

w52

ðh
z
$? � u? dz0 , (6)

assuming a rigid-lid approximation at the sea sur-

face w(h) 5 0. With an upper free surface, this w is

augmented by the kinematic surface value w(h)5
[›t 1 u?(h) � $?]h, which usually is small compared

to the TTW interior w values from (6) for sub-

mesoscale filaments; for consistency of a single time

diagnostic evaluation in TTW, the ›th term can be

dropped in w(h).

In the simple case of constant $?b5 x̂fS (S is the

geostrophic shear), constant ny0, and zero surface wind
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stress (but finite ny0 from whatever cause), the local

TTW solution is

u5 ugi 2
heS

2
e2z/h

e

�
cos

�
z

he

�
2 sin

�
z

he

��

y5 ygi1 S(z2 zi)2
heS

2
e2z/h

e

�
cos

�
z

he

�
1 sin

�
z

he

��
,

(7)

where he 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ny0/f

p
is the usual Ekman depth scale, and,

without loss of generality, h is here set to zero for this

local column. (Because this model for u? is linear, it can

be superimposed with the usual wind-driven Ekman

layer profile due to nonzero ts.) Thus, with f . 0 and

northward geostrophic flow (S, ygi . 0), the TTW

ageostrophic flow is a counterclockwise Ekman spiral

into the interior beneath a surface current with a mag-

nitude
ffiffiffi
2

p
heS and directed toward the southwest (Fig. 4).

By an integral of (7), the associated ageostrophic trans-

port is equal to h2eS/2 toward the south; that is, the

longitudinal TTW flow is reduced compared to the

geostrophic flow.

If there were neither turbulent mixing nor surface

stress, then the filament would have a geostrophic along-

axis flow and no secondary circulation. With a more

realistic, convex, positive profile for ny(z) (e.g., from

KPP; cf. Fig. 2), a u?(z) profile occurs with roughly a

similar shape to (7). With a surface wind stress ts, a

classical Ekman layer profile can be superimposed on

the buoyancy-gradient solution in Fig. 4. With horizon-

tal variations in ›xb, ny, and ts, a vertical velocity will

occur that is a baroclinic generalization of Ekman

pumping. This is the basis for the 2D TTW secondary

circulation in a filament (sections 4–5).

The approximate momentum-balanced model of

Garrett and Loder (1981) is less complete than the TTW

model through its neglect of the ageostrophic longitu-

dinal flow. The model and its recent 3D extension in

Ponte et al. (2013) are shown in Gula et al. (2014) to be

less accurate than the TTW balance in finite-Ro cir-

cumstances, as in Figs. 2–3.

4. An idealized filament

a. TTW implication for secondary circulation and
frontogenesis

As described in section 1, a surface filament has an

upper-ocean strip of anomalous density compared to its

horizontal environment in a stably stratified fluid. The

associated geostrophic flow is thus a pair of surface-

intensified jets on either side of the line. For a dense

filament along a line parallel to ŷ, the jet to the east is

northward when f . 0, while the one to the west

is southward (cf. y0 in Fig. 3). The associated TTW

ageostrophic flow (section 3) near the surface is thus di-

rected to the southwest in the northward jet and to the

northeast in the southward jet. This has the effect of re-

ducing the total y in the jets and creating a convergent u

toward the center of the filament, which will have a

frontogenetic tendency by advection across the buoyancy

gradients. This idea is developed more explicitly in the

following subsections.

In contrast, a light filament will have the reverse

structure for its geostrophic jets. Thus, its TTW

ageostrophic surface flow is toward the northeast in the

southward jet to the east of the filament center and to-

ward the southwest in the northward jet to the west of

the center. This again implies a reduction in the total y,

but now the cross-filament flow u is divergent away from

the center, which will have a frontolytic tendency by its

advection. For this reason, a light filament will tend

to spread and weaken its flow under the influence of

vertical momentum mixing. This is analogous to the

secondary circulation of a light filament undergoing

frontogenesis due to a background strain field, where the

strain-induced secondary circulation has central up-

welling and surface divergence; this opposes the direct

FIG. 4. Vertical profiles of ageostrophic TTWhorizontal velocity

ua (i.e., relative to ua 5 u 2 ug) for the simple case with depth-

uniform ›xb . 0 and ny0 and with zero surface wind stress.
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frontogenetic tendency due to the strain flow’s confluent

advection, making the net rate of frontogenesis much

weaker than for a dense filament (McWilliams et al.

2009b). Therefore, because light filaments are generally

less intense than dense ones and are further weakened

by the TTW effects of vertical mixing, no further con-

sideration will be given to them in this paper.

b. Dense filament structure

An idealization of the filament structure, motivated

by Fig. 2 and other examples, is the following: Assume

there is a surface buoyancy profile bs(x) with a central

minimum and a boundary layer depth h(x) with a central

maximum. The structure of b(x, z) is divided into three

layers. In thefirst layer,b(x, z)5 bs(x) forh(x)$ z.2h(x);

that is, the profile is well mixed. The third layer has

uniform stratification, b(x, z)5N2
0(H1 z) for 2H #

z#2h3,2h(x), and it has no flow. The second layer is

an interpolation between the first and third layers with

continuous values and vertical derivatives at the in-

terfaces and with its density stratification concentrated

just below the boundary layer:

b(x, z)5 [bs(x)2 b3]F(j)1 b3, j5
2z2 h(x)

h32 h(x)
,

F(j)5
ea(12jm) 2 1

ea2 1
, (8)

where b3 5 b(2h3)5N2
0(H2 h3), and a(x) satisfies the

derivative continuity condition at the bottom of the

second layer

ma

ea 2 1
5N2

0

h3 2h(x)

bs(x)2 b3
. 0. (9)

The parameter N2
0 . 0 is the deep stratification. The

parameter m . 1 regulates how strongly the pycnocline

is concentrated just below the boundary layer (i.e., more

so for smaller m . 1). This profile has ›zb $ 0 every-

where and is monotonic below z 5 2h(x).

The idealized form for the vertical eddy viscosity,

chosen here partly independent from b(x, z) and the

surface flux (note that their mutual consistency is en-

forced in section 5a), is the following:

ny(x, z)5 ny0G(l)
h(x)

h0
1 nyb , l52

z

h
,

G(l)5CG(l01 l)(12 l)2 , l# 1,

50, l$ 1. (10)

The parameter h0 is the far-field boundary layer depth.

The parameter 0 , l0 � 1 is a small regularization

constant to avoid a logarithmic singularity in u? as z/ 0.

The parameter 0, nyb� ny0 provides a small background

diffusivity in the interior. The relation CG 5 4(11 l20)/27

makes the vertical column maximum of G 5 1. This is a

simplified ny(x, z) shape approximately as assumed in the

KPP scheme (Large et al. 1994), consistent with a uniform

turbulent velocity scale (related to the surfacemomentum

and buoyancy fluxes but here represented by ny0/h0), a

convex vertical profile shape within the boundary layer,

and a column peakmagnitude proportional to h(x). (See

section 5 for the actual KPP solutions.)

These functions are evaluated for profiles that

express a central minimum in bs(x) and maximum in h(x)

appropriate to a cold/dense filament core:

bs(x)5 bs02 db0 exp[2(x/L)2],

h(x)5h01 dh0 exp[2(x/L)2] . (11)

No attempt is made to closely match the numerical

values in Fig. 2, which are a result of a complex and

imprecisely known evolutionary process within the re-

alistic simulation (Gula et al. 2014). Rather, plausibly

similar values are chosen for illustrative purposes with

similar deep stratification and somewhat weaker fila-

ment and boundary layer mixing strengths, namely,

H5 250m, N2
0 5 3:443 1025 s22,

f 5 7:813 1025 s21, h35 130m,

b35 4:133 1023 m s22, bs05 8:513 1023 m s22,

db05 1:433 1023 m s22,L5 3:5 km, h05 60m,

dh05 17m, m5 1:1, l05 5:03 1023,

ny05 3:863 1022 m2 s21, nyb 5 1:03 1024 m2 s21 .

(12)

The resulting fields are calculated by solving the TTW

vertical boundary-value problem independently at each

x as described in the appendix, and they are shown in

Fig. 5. The velocities satisfy the TTW equations with no

surface wind stress at each horizontal location. (The

consistent inclusion of ts and ny is done in section 5a.)

Because ›xb, 0 on the west side, the ageostrophic TTW

u . 0, and vice versa, on the east side. Thus, the TTW

circulation for a filament has surface horizontal con-

vergence and central downwelling. This circulation

pattern is qualitatively similar to that in Fig. 3, but here

without any wind-driven Ekman currents. In particular,

this shows that the double-celled secondary circulation

can be entirely due to ny(x, z) in the presence of b(x, z)

as a TTW circulation, and its structural similarity to

the strain-induced frontogenetic secondary circulation
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(Fig. 1; McWilliams et al. 2009b) means that detection of

this flow pattern alone is insufficient to distinguish be-

tween these two processes to infer the evolutionary dy-

namics of a filament. Note also that the secondary

circulation implies a net conversion of potential to kinetic

energy
ÐÐ

wbdxdz. 0 in both situations.

In contrast to the solution in (7) with constant ny and

constant ›xb, the parameter dependencies of the TTW

circulation for this ny(x, z) and b(x, z) problem are

somewhat complex; for example, by simply varying

ny0 with the other parameters in (12) held fixed, the

central downwelling is strongest for ny0 ’ 7.5 3
1022m2 s21 withmin(w)’20.933 1023m s21 (i.e., only

slightly larger than in Fig. 5, lower right). The

ny0 dependencies are nonmonotonic because the shape

of the secondary circulation changes somewhat with this

parameter. Overall, the variations in (u, w) are not

strong functions of the eddy viscosity parameters. The

reason is that the z5 0 boundary condition in (2) with

ts5 0 is ›zua52sg, independent of the value of ny, and

this is the only forcing term for the ageostrophic

horizontal TTW circulation. In section 3, the eddy

viscosity only matters in determining the Ekman

boundary layer depth scale he }
ffiffiffiffiffiffiffi
ny0

p
, which here is

controlled by h(x) in (11), and the strength of the

ageostrophic secondary circulation is She in (7). Thus,

the stronger the surface geostrophic shear and the

deeper the boundary layer depth (or stronger the

turbulent mixing), the stronger is the TTW ageo-

strophic secondary circulation. When ny(x, z), as in

(10), this will cause additional spatial variation in ua
and especially in w from (6); however, because the

mixing coefficient dependencies are fairly weak and

the TTW system is readily calculable, the full param-

eter dependencies are not mapped.

Notice that this h(x) profile does not have a dimple on

the filament edges, and hence ny does not have a mini-

mum there. This choice is made mainly for simplicity;

the possibility of an evolutionary development of a

dimple is discussed in section 5b.

c. Frontal tendency

A diagnostic Lagrangian frontal tendency balance

relation can be formulated for the horizontal gradient

variances, as has often been done for (›xb)
2 for

buoyancy fronts (Hoskins 1982; Capet et al. 2008b).

With the different shape of a buoyancy filament (and

anticipating the frontogenetic evolution in section 5),

FIG. 5. (top, left) Buoyancy, (top, right) vertical eddy viscosity, and (bottom) TTW velocity fields for an idealized filament with the

parameters in (12). The black lines denote the boundary layer depth at z 5 2h(x) or (for buoyancy) z 5 2h3.
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this balance is a more informative diagnostic for

(›xy)
2, namely, for a 2D solution:

D

Dt

1

2
(›xy)

25Tya2Tf 1Tyn
y
1Tyv?

Tya52›xy(›xu›xy1 ›xw›zy)

Tf 5 f›xu›xy

Tyn
y
5 ›xy›x›z(ny›zy)

Tyn?
5 n?›xy›

3
xy . (13)

The right-side tendency terms are, respectively, advec-

tion by the secondary circulation, exchange with the

analogous balance relation for (›xu)
2 through the Cori-

olis force, and vertical and horizontal eddy viscous dif-

fusion (assuming a constant n?). Even though the focus

here is on (›xy)
2, rather than (›xb)

2 and (›xu)
2, the pre-

sumption is that they all will grow together in a fronto-

genetic event if a degree of continuing adjustment

toward TTW balance is maintained during the evolu-

tion; this is assessed in section 5b.

Figure 6 shows the primary tendency terms. The sec-

ondary circulation advection in Tya is dominant, and it

is frontogenetic in the upper center in the sense of

increasing ›xy . 0 and hence also cyclonic z, thus

narrowing the horizontal distance between the two

longitudinal velocity jets. The Coriolis tendency Tf is

similarly frontogenetic with about half the magnitude of

Tya. It represents an exchange with the Lagrangian

tendency balance for (›xu)
2 where it appears with an

opposite sign. The vertical mixing tendency Tyny has

nearly the same magnitude as Tf but has the opposite

sign; hence, it is frontolytic, as might intuitively be ex-

pected for a mixing process. The horizontal mixing

tendency Tyn? is about two orders of magnitude weaker

with a n? value of 0.1m2 s21 (section 5), and its pattern is

mostly negative (frontolytic), as expected. The net of

these tendency terms, however, is strongly frontoge-

netic. This raises the question of how a TTW filament

will evolve, which is addressed in the next section.

5. Evolution of an idealized dense filament

a. Setup and initial condition

The preceding idealized filament is ad hoc in the sense

that b(x, z) and ny(x, z) are independently chosen for

determining u by the TTW relations. A more consistent

alternative is to specify all of these fields together with a

boundary layer parameterization scheme, which is cho-

sen as KPP, consistent with the simulation results in

Figs. 2–3. This means that the mixing coefficients ny and

ky will be consistent with b and u as well as with the

surface boundary forcing that sustains the boundary

layer turbulence. For simplicity, choose a wind-driven

case without surface buoyancy flux, for example, with

constant eastward wind stress

ts 5 t0x̂ (14)

and t0 5 0.1Nm22. The qualitative behavior of the fil-

ament evolution is not strongly dependent on wind di-

rection [in contrast to the centrifugal instability

instigation mechanism of Thomas and Lee (2005)].

With a nonzero surface stress, there will be a wind-

driven (i.e., Ekman layer) component to the TTW so-

lution superimposed with the ›xb component. There is a

bulk advective movement of the filament by the Ekman

circulation (or any other ambient larger-scale circula-

tion), which is least in the direction perpendicular to the

Ekman transport, that is, trivially to the south for (14).

(ROMS solutions with different wind directions have

been obtained but for brevity are not shown.)

FIG. 6. Frontal tendency terms in the (›xy)
2 balance [(13)]: (left) advection, (middle) Coriolis conversion, and (right) vertical mixing.

These are evaluated for the idealized TTW filament in Fig. 5. The black line denotes the boundary layer depth at z 5 2h(x).
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To make the initial condition compatible with ROMS

using KPP and TTW, the following iterative procedure

is followed:

(i) Specify b(x, z) by (8), h(x) by hydrostatic integra-

tion from flat pressure surfaces at depth, ts(x) by

(14), and a first guess for n0y(x, z) by (10).

(ii) Set the iteration count to n 5 0.

(iii) Calculate un(x, z) by the TTW relations in the

appendix from b, h, ts, and nny .

(iv) Calculate nn11
y (x, z) by the KPP model using b, ts,

and un.

(v) Set n5 n1 1 and iterate steps iii–iv until convergence.

(vi) Determine ky(x, z) by KPP from the final b, ts, and u.

The result will have the same b as in Fig. 5a but a different

h(x) as well as a different ny and u. In this wind-driven case

without surface buoyancy flux, ky 5 ny. Finally, the sea

level height h(x) is determined by hydrostatic integration

upward from deep in the interior where the horizontal

pressure gradient vanishes; for the dense/cold filament,

h has a weak central depression of about 0.01m relative

to the exterior.

The consistent filament initial condition is shown in

Figs. 7–8. There are strong similarities to the idealized

filament fields in Fig. 5. The largest differences are due

to the wind-driven flow, which is dominant in the far-

field profile (Fig. 8b) but, of course, present throughout

the domain. Its velocities are relatively weak compared

to those in the filament. It does break the x symmetry in

the filament to a moderate degree, as seen in u, y, h, and

ny. It also breaks the superposition of wind and baro-

clinic components of the TTW velocity because the

FIG. 7. Buoyancy and TTW velocity fields for an idealized filament with the same b as in Fig. 5 and the KPP-

consistent eddy viscosity shown in Fig. 8 with the wind stress in (14). The color bar ranges are the same as in Fig. 5

for b andw but are somewhat larger for u and y. The black line denotes the boundary layer depth at z52h(x). The

turbulent entrainment velocity here is V0 5 0.15m s21. This is the initial condition for the ROMS integration.
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consistent ny(x, z) is a nonlinear function of both com-

ponents. Comparing the n fields in Figs. 5 and 8, left

panel, the x asymmetry in the latter arises because of the

asymmetry of the superimposed Ekman and geostrophic

velocity fields. The vertical velocity is unaffected by ts

directly because of its spatial uniformity, but it is mod-

estly influenced by the horizontally variable Ekman

current associated with variable ny(x, z). The frontal

tendencies (13) evaluated for the consistent initial con-

dition (not shown) are similar to those in Fig. 6, again

with the implication of a frontogenetic tendency in

(›xy)
2 at the core of the filament.

A ROMS integration is performed with this idealized

filament initial condition. The 2D integration domain is

L 3 H with L 5 20 km and H 5 250m. The grid size is

Nx 3Nz, with Nx 5 1600 (Dx5 12.5m) and Nz 5 640 in

the highest-resolution cases. Over a range of grid sizes

down to 10 times smaller than these Nx and Nz values,

there are no important qualitative differences in the

solution behavior, although there are moderate quanti-

tative differences (e.g., in the peak vorticity; Fig. 11).

The horizontal boundary condition is periodicity. The

top is a free surface with the wind stress (14) and no

buoyancy flux. The bottomboundary conditions arew5 0

and zero stress.

The boundary layer vertical mixing parameterization

scheme is the single-column, single-time KPP whose

equations are presented in Large et al. (1994), and

ROMS uses the alternative prescription for determin-

ing the boundary layer depth h in the appendix of

McWilliams et al. (2009c). Its physical rules were

devised for horizontally homogeneous, temporally

stationary, or self-similarly developing (e.g., penetrative

convection) circumstances. In large-scale circulation

models, where KPP is widely used, these assumptions

are a plausible characterization of the boundary layer

environment.

In this filament problem, with its strong lateral

gradients and rapid time development, however, KPP

is being applied well beyond its realm of calibration

and validation faute de mieux; that is, the same caveat

could be stated about all other extant subgrid-scale

mixing parameterizations in an active submesoscale

regime. The conceptual fallacy is taking an overly local

view of the turbulent mixing, that is, ignoring (x, y, t)

connectivity in KPP or even (x, y, z, t) connectivity

in single-point second-moment closures such as k–�

(Davidson 2004).

In performing the ROMS integrations, it was discov-

ered that fine structure often develops on the sides of the

filament in the KPP-diagnosed h(x, t) and hence appears

in ny(x, z, t) and ky(x, z, t). Its signature is local, sudden

but time reversible, increases in h by about 10–20m in

the regions underneath the strongest surface horizontal

buoyancy gradients where, as will be shown, h generally

retreats with time, and the residual vertical stratification

underneath becomes very weak, partly because of lat-

eral advection of filament-core water by the divergent

circulation at depth under the flanks of the filament.

These jumps happen rarely and at essentially separate

x and t points, but nevertheless they are implausible

as a representation of ensemble-mean turbulence that

should vary smoothly in space and time on the scale of

its environment.

FIG. 8. (left) Eddy viscosity and the (right) Ekman layer velocity profile in the far field, which

would be zero with no wind stress. These are for the KPP-consistent initial conditions and

accompany the b and u fields in Fig. 7. The turbulent entrainment velocity here is V0 5
0.15m s21.
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The formulation used for determining h in KPP is the

alternative integral condition in McWilliams et al.

(2009c) instead of the original bulk Richardson number

condition in Large et al. (1994). Both include a turbu-

lent velocity scale Vt, which was originally proposed

to represent entrainment by convective plumes by

deepening h to reach into the stable stratification at the

base of the mixed layer (i.e., the ‘‘inversion’’ layer), and

it has recently been proposed to additionally represent

entrainment by Langmuir circulations in the presence of

surface gravity waves (McWilliams et al. 2014). To

ameliorate the fine structure, the Vt term is further in-

cremented by a constant velocity scale V0, with both

the a posteriori rationale of smoother solutions and an a

priori rationale of additional turbulent generation by the

filament profiles. Values for V0 are chosen between

0 and 0.15ms21, that is, about the same size as the fila-

ment horizontal velocities in Fig. 7; much larger values

would be inappropriate by causing excessive boundary

layer deepening. Even more powerful in ensuring the

smoothness of h(x, t) is the use of a limiter for its local

rate of change

����›h›t
����# h

t*
/ jh(x, t1Dt)2 h(x, t)j#Dt

t*
h(x, t) (15)

at every x, where Dt is the model time step size (i.e., 12 s

on the finest spatial grid), and t* is an adjustment time to

achieve a new turbulent equilibrium in the boundary

layer. That is, at the new time the KPP prescription for

h(x, t1Dt) is limited in howmuch it can change from the

prior time h(x, t) to not exceed this right-side limiter.

Rough estimates of t* are anEkman response time f 21’
1.4 3 104 s or a vertical velocity eddy turnover time

h/w ’ 7.0 3 104 s. An appreciable smoothing benefit in

h(x, t) is evident for t* $ 104 s, and the solutions in

section 5b are for t*5 4.03 104 s whose h(x, t) solutions

are quite smooth in time. Of course, these incremental

KPP specifications ofV0 and t* are quantitatively ad hoc

and chosen to assure that the boundary layer mixing

behaves similarly to that seen in full ROMS simulations

with the native KPP (section 2). These issues are further

discussed in sections 5b and 7.

An explicit horizontal eddy viscosity and diffusivity

have sometimes been included in exploratory solutions,

with the largest values of n? 5 k? 5 0:5m2 s21, which is

up to 10 times larger than the peak value in the initial ny
(Fig. 8). However, the results in the following four plots

are for n? 5 k? 5 0. The ROMS horizontal advection

operator is third-order upstream biased, and hence it

implicitly has a flow-adaptive hyperdiffusive effect near

the grid scale independent of any explicit diffusivity.

None of these horizontal diffusive effects are of any

consequence until the late stage of filament frontogenesis

after the central velocity gradient scale has approached the

horizontal grid scale (section 5b). We only briefly consider

the later stages after a diffusive arrest of the frontogenesis

(see Fig. 13 and the associated discussion); no particular

physical credence is to be given to the horizontal eddy

diffusivities that represent the small-scale turbulence that

causes the arrest until a more fully 3D simulation can

discover what their proper cause might be.

b. Frontogenetic evolution

The filament evolution proceeds from the initial fields

in Fig. 7 to those at t 5 0.65 days in Fig. 9. Overall, the

spatial configurations are preserved, but many aspects

have changed. Most strikingly, the distance between the

two longitudinal y jets has shrunk, as has the width of the

centralw downwelling. The frontal structure inb, y, andw

is rather deep, extending most of the way through the

boundary layer. The field z(x, z) (not shown) also

exhibits a narrow, deeply extended extremum. The hor-

izontal scale over which u(x, h) reverses sign has similarly

shrunk. These are manifestations of frontogenesis. The

buoyancy b has developed a kink at the surface, and its

isolines have tiltedwithin themixed layer, consistent with

the surface convergence and subsurface divergence in the

secondary circulation. The function h(x) has diminished

in magnitude, and the width of its central region of deep

values has shrunk. In the locations where h has shrunk the

most (even to the point of developing a dimpled shape),

fine structure fluctuations in h(x, t) can arise on the lower

side of the filament—in the absence of the time-limiter

condition (15)—in which neighboring points can jump

between the mostly diminished values and the deeper

original values; it is clear from b(x, z) that this vertical

interval is one of very weak or even slightly unstable

stratification between a weak pycnocline above and the

main pycnocline below. There are faint indications of

internal gravity waves in the pycnocline in the interior

colorations in u and w and small undulations in the

b contours; their presumptive source is the rapid time

development of the filament that exhibit a degree of

momentum imbalance relative to the TTW approxima-

tion (see the discussion ofR near the end of this section).

By this time of t5 0.65 days, the fields in the filament

center have reached a limit of effective resolution

with ,10 grid points in the central extrema in w and

z 5 ›xy. Afterward the model integration proceeds

without blowup, but there is no further sharpening of the

central gradients, and the magnitudes of these extrema

begin to decay. The time of this grid-scale limitation is

remarkably insensitive to the parameter choices for Nx,

Nz, V0, nyb, kyb, and n? 5k?, consistent with the in-

terpretation of a conservative evolution approximately
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toward a finite-time singularity (section 6), which would

imply a very steep cost–benefit curve for increasing

resolution around this time. The insensitivity of this time

to n? 5k? within the range of values explored indicates

that the model’s implicit hyperdiffusion is playing an

important role in limiting the frontogenesis. Consistent

with this, the peak magnitudes of, for example, w and z,

do increase with the grid numbers and decrease with the

explicit horizontal diffusivities. Because the model so-

lution is computationally unreliable once the grid-scale

limitation is reached, no further attention will be given

to later times. With larger n? and k?, no doubt a quasi-

steady state arrest could be achieved, but this is not of

great interest in the absence of a dynamical explanation

for these elevated diffusivity values.

Amore detailed view of the horizontal structure at the

surface is in Fig. 10, comparing profiles at t 5 0 and

0.65 days for b, u, and y. The b profile becomes more

nearly linear on both sides of the filament and closely

approximates a cusp at the center. There is a general

increase with time indicating convergent advection to-

ward the center. The central magnitude itself increases

only slightly, perhaps due to horizontal diffusion, and it

moves,1 km to the east because of the eastward surface

Ekman velocity (Fig. 8, left panel). The u and y profiles

both manifest a near discontinuity at the center of the fil-

ament because of the advective convergence in the sec-

ondary circulation; this near discontinuity is the emergent

frontal structure of a filament under the influence of

boundary layer mixing. All three profiles exhibit vanishing

temporal changes in the far field.

Time series of the central downwelling w and central

cyclonic vorticity z are shown in Fig. 11. Except for a

very early adjustment in w, both series show monotonic

growth for the plotted time interval. The final time of t5
0.65 days is close to the largest extremum inw as the limit

of grid resolution is approached, although the z extremum

continues to increase up until about t 5 0.8 days (not

FIG. 9. Buoyancy and velocity fields at t 5 0.65 days in the ROMS integration with the t 5 0 initial condition in

Fig. 7; the contour and color ranges are the same as at t5 0 except for a larger range for w. The black line denotes

the boundary layer depth at z 5 2h(x). This case has V0 5 0.15m s21 and n? 5 k? 5 0.
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shown). The largest w value is 0.5cms21, which is quite

large for oceanicmesoscale and submesoscale currents with

approximate momentum-balanced dynamics. The largest

z value of 4.63 1023 s215 58fmeans that the local Rossby

number becomes very large.

Parameter sensitivities for this solution are previously

discussed where the values of Nx, Nz, V0, n?, and k? are

given. None of them qualitatively changes the fronto-

genetic evolution at the filament center. Even when

V0 5 t*5 0 is chosen in KPP and h(x, t) fine structure

arises (section 5a), this does not influence the primary

flow evolution, although it does act as a weak source of

internal gravity wave excitation and propagation

downward into the interior. Furthermore, an extreme

choice of holding ny(x, z) and ky(x, z) fixed in time at

their initial values still supports filament frontogenesis at

approximately the same rate as seen with consistent

interactive boundary layer mixing, albeit with peculiar

behavior near the bottom of the layer; that is, the exis-

tence of the secondary circulation is due more to the

existence of vertical momentum mixing in the boundary

layer than it is to its particular strength or structure.

The smoothly evolving boundary layer depth h(x, t)

with t* 6¼ 0 is moderately dependent on the value of the

turbulent entrainment velocity V0, as illustrated in

Fig. 12, that compares h for cases with V0 5 0.1 and

0.15ms21. The function h is smaller with the smaller V0,

as expected because the entrainment velocity is smaller.

The function h generally decreases with time due to the

rearrangement of the b and u fields by increased density

stratification associated with lateral advection of dense

water away from the filament center near the bottom of

FIG. 10. Cross-filament profiles in the ROMS integration at the surface for b0(x, h) (i.e., with
horizontal average subtracted), u(x, h), and y(x, h) at t 5 0 (dashed lines) and t 5 0.65 days

(solid lines), which is the time of maximum downwelling at the filament center (Fig. 11).

FIG. 11. Time series of spatial extrema in w (left ordinate) and z/f

(right ordinate) in the ROMS integration up to the time of the largest

central downwelling value (t 5 0.65 days). The latter is a peak local

Rossby number. The horizontal eddy diffusivities are zero here.
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the boundary layer. Interestingly, the smaller h(x) values

on the filament sides show the development of a dimple in

h, where h is less than it is in the far field, with the smaller

value ofV05 0.1ms21; this tendency is even strongerwith

smaller V0. This behavior echoes the dimple in the re-

alistic simulation example in Fig. 2. The explanation is

that the divergent branch of the secondary circulation in

the lower part of the boundary layer advects central dense

water underneath the lighter surfacewater on the filament

edge, while the convergent surface circulation advects

lighter water from the sides. These tendencies increase the

vertical buoyancy stratification, which inhibits boundary

layer penetration. This process occurs in competition with

the boundary layer deepening by entrainment mixing.

The outcome is dependent upon the entrainment velocity

V0. At the present level of uncertainty about how to pa-

rameterize the boundary layer turbulence in an evolving

submesoscale filament, no strong conclusion should be

drawn about when dimples will develop.

The influence of horizontal eddy diffusion is explored in

an alternative ROMS simulation with n? 5 k? 5 0:5m2s21

(Fig. 13). The progression toward frontogenesis pro-

ceeds much as in the previous solution, and the peak

values of w and z are reached at almost the same times,

albeit with reduced magnitudes. The effect of this added

mixing is to arrest the frontogenesis on a finite scale that

is well resolved on the model grid. In the later stages

following the arrest, the filament enters a period of slow

decay as the central buoyancy anomaly and its associ-

ated TTW circulation are eroded by the lateral mixing.

The initial conditions, by construction, satisfy ex-

actly the TTW balance with the KPP-consistent vertical

viscosity (section 5a). How well is this balance main-

tained during the subsequent evolution? This is assessed

by diagnostically calculating uTTW? from (1) to (2) given

the b, ny, ky, and ts fields as they occur at each time in

the ROMS integration with V0 5 0.15ms21 and

n? 5 k? 5 0m2 s21. The fractional departure from TTW

balance is measured by

R(t)5
rms[uTTW? 2 u?]

rms[u?]
, (16)

where rms[ ] denotes the total root-mean-square varia-

tion of the vector velocity within a (x, z) spatial domain.

Two spatial domains are examined: one is the total model

cross-sectional area, and the other is limited to a central

strip, jxj # 1km, within which the frontogenesis occurs

andwhere there ismuch less evolutionary change in h(x, t)

(Fig. 12). In both domains, R(t) rapidly rises (within the

first Dt ’ 0.03 days) to a value of about 0.2 and then

fluctuates about this value for the rest of the integration,

even beyond the time of maximum central downwelling

(t 5 0.65 days). The spatial pattern of uTTW? 2 u? is

somewhat complex and generally on a smaller scale than

the filament fields as awhole.A large part of it reflects the

finite acceleration ›tu? in the momentum balance be-

cause of the rather rapid frontogenetic evolution of the

filament. Separate plots of uTTW? (x, z) and u?(x, z)
show a strong resemblance at all times, but they are not

included here. Therefore, we conclude that TTWbalance

is fairly well, but not perfectly, maintained by a continu-

ing adjustment process during the frontogenesis.

FIG. 12. Boundary layer depth h(x) for two ROMS integrations

with differentV0 values in KPP.Dashed lines are for t5 0 and solid

lines are for t 5 0.65 days; black lines are for V0 5 0.15m s21, and

red lines are for V0 5 0.10m s21. The function h(x, t) mostly in-

creases with V0. Here, n? 5k? 5 0m2 s21.
FIG. 13. As in Fig. 11, but with n? 5k? 5 0:5m2 s21. Notice the

reduction of the ordinate range and the extension of the time pe-

riod displayed.
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6. An approximate model for filament
frontogenesis

Consider the buoyancy equation in 2D with vertical

and horizontal mixing:

›tb52u›xb2w›zb1 ›z(ky›zb)1 k?›
2
xb . (17)

Within themixed layer near the surface, ›zb is very small,

so the second and third right-side terms can be neglected.

If an approximate TTW balance is assumed and if the

Ekman velocity from ts is neglected, then from (7)

u(h)’2
Sh

2
,

where h is a boundary layer depth scale and ›xb 5 Sf.

Substituting this into (17) gives an approximate evolu-

tion equation for b near the surface:

›tb5
C

2
(›xb)

21 k?›
2
xb ,

with C 5 h/f, or by taking another derivative in x and

defining p 5 ›xb,

›tp5Cp›xp1 k?›
2
xp . (18)

Nondimensionalize p, t, and xbyp0, t0, and ‘0 to finally obtain

›t0p
0 1p0›x0p

0 5
1

Pe
›2x0p

0 (19)

when the following choices are made:

p052Sf , t05
‘0
Sh

, Pe5
Sh‘0
k?

. (20)

Primes denote nondimensional variables. Equation

(19) is Burgers’ equation in 1D where Pe is the Peclet

number. For large Pe (small diffusion), solutions of

Burgers’ equation are mathematically known to evolve

toward discontinuous solutions in x (i.e., shocks) in finite

time (Hopf 1950; Whitham 1974). For finite but large

Pe, a near-shock solution will approximately locally

equilibrate with a finite width scale:

‘e ;k?/Sh , (21)

which is smaller as the buoyancy gradient and/or

boundary layer depth are larger or as the horizontal

diffusivity is smaller; on a longer time scale, the solution

will diffusively decay. In the filament evolution solutions

in section 5, neither S nor h change very much with time,

and hence ‘e is approximately known from k? and the

filament initial conditions.

To illustrate this behavior with relevance to the fila-

ment frontogenesis in section 5, consider an initial-value

problem for (19) with

p0(x, 0)52x0e2(x02)/3 . (22)

This has the same general shape as 2›xb(x, 0, 0) for a

dense filament as in (8) and Fig. 5, here with a somewhat

broader far-field decay scale; the important region for

the shock development is the neighborhood of x0 5 0.

This is evident in Fig. 14: p0(x) evolves toward a dis-

continuity at x0 5 0, and its derivative evolves toward a

singularity at a finite time, that is, with a functional de-

pendence in the form of

›x0p
0(0, t0);

c0
(t00 2 t0)a

(23)

locally in time close to the singularity at t0 5 t00. For this
solution, a global fit in time (for simplicity) yields es-

timated values of t00 ’ 1:008, c0’21.008, and a’ 1.16,

FIG. 14. An approximate numerical solution p0(x0, t0) of (19) with (22) and Pe5‘. (left)2p0(x0)
at t0 5 0, 0.5, and 1.0, showing the progression toward a positive-step discontinuity at x0 5 0.

(right) 2›x0p
0(0, t0) vs t00 2 t0 (solid line) for a value of t00 5 1:008, which is determined to make

the result approximately fit (23) (dashed line) on this log–log plot over the interval 0# t0 # 1.0,

indicative of a finite-time singularity in the derivative of p0.
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and this fit is also plotted in Fig. 14 (right).2 Although

the fit is imperfect for this particular numerical solution,

and an accurate numerical solution approaching a sin-

gularity is difficult, and nevertheless the result is highly

suggestive of the theoretically expected singular

behavior.

Burgers’ equation has been identified before in the-

oretical analyses of strain-induced frontogenesis for an

atmospheric surface front in the specific context of the

Hoskins and Bretherton (1972) model (Blumen 1980;

Boyd 1992)3 but not for the TTW-induced phenomenon

examined here. As here, however, their primary result

was a finite-time singularity in an inviscid balanced

model of frontogenesis.

In summary, the approximate model system (18) in-

dicates an evolution of ›xb near the surface in a dense/

cold filament toward a horizontal positive-step discon-

tinuity until limited by diffusive processes; furthermore,

with the assumption of TTW balance (section 3), b(x, z)

will evolve toward a negative cusp at the center, u(x, z)

and y(x, z) will evolve toward opposite-sign disconti-

nuities, and z will evolve toward a cyclonic singularity—

all of which are qualitatively consistent with the full-

system evolution in section 5 up to the time limit of

computational reliability (i.e., t 5 0.65 days). This be-

havior is analogous to the finite-time singularity for the

strain-induced frontogenesis of a semigeostrophically

balanced front with uniform interior potential vorticity

and conservative dynamics (Hoskins and Bretherton

1972). These singularities are unlikely to be realized for

the actual frontal or filament evolution because the

balance approximations are unlikely to be exact (see the

end of section 5b), small-scale 3D instabilities are likely

to arise, and the fluid is not inviscid.

7. Summary and prospects

In the presence of turbulent momentum mixing in the

surface boundary layer, a dense filament structure in

b(x, z) develops a momentum-balanced circulation, the

turbulent thermal wind (TTW). (Without the presence

of turbulence, the momentum balance would simply be

geostrophic, and no further evolution need occur.) In

the cross-filament plane, the secondary circulation has

surface horizontal convergence with downwelling un-

derneath (section 3). This leads to a frontogenetic

sharpening of the central horizontal shear of the down-

filament velocity, that is, the vertical vorticity, with ac-

companying sharpening in the surface convergence

pattern, vertical velocity, and density curvature (section

5b). In an approximate model of the surface buoyancy

evolution assuming TTW balance (section 6), the ad-

vective tendency of the convergent secondary circula-

tion leads to a finite-time singularity in the central

vorticity z, although of course this is not demonstrable

in a full 2D hydrostatic computational integration that

has more general dynamics than just the TTW balance

and has a diffusive regularization near the grid scale

necessary to avoid computational blowup.

The frontogenesis is a result of the surface geostrophic

vertical shear Sg5 ›zyg and the boundary layer turbulent

mixing ny. Approximate scaling relations, derived from

the TTWmodel (section 3) and the frontogenesis model

(section 6), are that the ageostrophic shear is compara-

ble to the geostrophic shear Sa ; Sg; the time to develop

significant frontogenesis is the advective time

t0 ; ‘0/Sgh; z21
g ; and, in the presence of a horizontal

eddy diffusion process, the possible horizontal frontal

arrest scale is ‘e ;k?/Sgh;k?/(‘0zg), or when ‘0 / ‘e
and zg / ze (an equilibrated value), ‘e /

ffiffiffiffiffiffiffiffiffiffiffi
k?/ze

p
. Al-

though the existence of a significant ny is a necessary

enabler of the frontogenesis, the evolution itself is not a

sensitive function of its value.

Thus, the general picture is that seed density filaments

are created in the midst of chaotic horizontal advection

bymesoscale eddies; they are sometimes frontogenetically

sharpened into strong submesoscale filaments by

further mesoscale straining deformation; and they will

further evolve frontogenetically by the interaction of

boundary layer turbulence with the filament density

structure that maintains the TTW secondary circulation.

Analogous phenomena occur for surface density fronts:

a mixing-induced secondary circulation qualitatively

similar to the one induced by straining deformation

and a frontogenetic tendency on the dense, cyclonic,

downwelling side of the front where the surface hori-

zontal velocity is convergent.

The solutions presented here call for further consid-

eration of how to parameterize boundary layer turbu-

lence in submesoscale circulation regimes where the

space–time scale gap is not large (i.e., kilometers or less

horizontally, tens of meters vertically, and multiple hours

temporally). The widely used K-profile parameterization

2 The time to reach the first singularity is analytically calculable

from the initial profile p0(x, 0) by using the method of character-

istics for Burgers’ equation, as explained in Boyd (1992).
3 Blumen (1980) even anticipated the TTW effect in a front by

appending a surface Ekman layer to the inviscid model of Hoskins

and Bretherton (1972). A ‘‘vertical velocity jet’’ through the cy-

clonic vorticity part of the front was noted, which is a part of the

TTW secondary circulation. However, the frontogenetic effect was

not part of his particular solution, although he did comment that

‘‘convergence in the boundary layer should tend to concentrate

gradients of wind and temperature, while the divergent flow aloft

would be frontolytic’’ (Blumen 1980, p. 76), which was prescient

but not followed through on.
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(KPP) boundary layer scheme in its native form evinces

fine structure not generally present in applications for

larger-scale circulation; here, it turns into an unintended

stochastic parameterization at least on the sides of the

filament. The most plausible step forward is to inculcate

finite horizontal and temporal correlation scales presently

missing in the KPP scheme, as has been done pro-

visionally simply by limiting the rate of change of h in (15).

There is the further implication from the utility of V0 in

maintaining a deeper boundary layer on the flanks of the

evolving filament (section 5a) that additional turbulent

energy generation and pycnocline entrainment processes

may become active in a submesoscale environment

through additional turbulence generation in the large

‘‘mean’’ shears that are present. The central filament zone

does not exhibit this fine structure delicacy in its KPP

fields (h, ny, and ky) even without finite values of V0 or t*;

hence, the central filament frontogenesis prediction seems

robust within models of this class or even, one could ex-

trapolate, eddy viscosity models in general. However, the

general subject of boundary layer–submesoscale interac-

tions needs further exploration. The most reliable tool for

this exploration would be a nonhydrostatic large-eddy

simulation that resolves both flow components with only

mild parameterization assumptions. Finally, the present

2D solutions preclude 3D instability processes—especially

the barotropic instability of the developing vortex sheet in

the filament center, which is the primary instability mode

for Gulf Stream filaments (Gula et al. 2014)—that may

interrupt or even arrest the frontogenetic progression or at

least transform it into more fragmented surface vorticity

lines; this too warrants further exploration.
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APPENDIX

TTW Solver in ROMS

For reproducibility, the discretization of the TTW

algorithm in ROMS is included.

ROMS has a staggered grid (Shchepetkin and

McWilliams 2005). In the vertical the horizontal velocity

uk and dynamic geopotential fk, k 5 1, . . . , N, are

located at cell centers with thickness Hk such that

�N
1 Hk 5H1h, the ocean column depth. The vertical

viscosity nyk11/2, k 5 1, . . . , N 2 1, is located at inte-

rior cell interfaces. The geopotential u is obtained

hydrostatically by vertical integration of b with a surface

boundary condition equal to gh.

The discrete TTWproblem for u?(z) is posed in ROMS

as the horizontal momentum balance—rather than as its

vertical derivative in (1)–(4)—at the vertical cell centers.

For interior cells, k 5 2,. . . , N 2 1, the equations are

2fHkyk52Hk(›xf)k 1 [Ak11/2(uk112 uk)

2Ak21/2(uk 2 uk21)]

fHkuk52Hk(›yf)k 1 [Ak11/2(yk112 yk)

2Ak21/2(yk2 yk21)] , (A1)

where Ak11/2 5 2nyk11/2/(Hk 1Hk11), k 5 1, . . . , N 2 1

are the viscous flux factors between adjacent grid cells.

They need not be defined at the surface and bottom

because they are replaced by the boundary conditions at

z 5 2H and h. In the top cell, the second right-side

terms are replaced by the surface wind stresses tsx/r0 and

tsy/r0, respectively. In the bottom cell, k 5 1, the final

right-side terms are zero because of zero stress at

z 5 2H. (Its generalization to a nonzero bottom stress

would be analogous to the surface stress replacement.)

This system is rewritten for k 5 2, . . . , N 2 1 as

ak21/2uk21 1bkuk 1 ak11/2uk115 dk , (A2)

where the two vectors are the velocity and pressure

gradient

uk 5

�
uk
yk

�
and dk 52

2
4Hk(›xf)k
Hk(›yf)k

3
5 , (A3)

and the 2 3 2 matrices are

ak61/252

 
Ak61/2 0

0 Ak61/2

!
and

bk 5

 
Ak11/21Ak21/2 2fHk

fHk Ak11/2 1Ak21/2

!
. (A4)

As explained above, the analogous forms of (A2) at the

boundary-adjacent cells are altered to include the bound-

ary conditions at k5 1 the terms involvingAk21/2 through

ak21/2 and bk are replaced by zero, and at k5N, the terms

involvingAk21/2, ak21/2, and bk are replaced by the vector

2

�
tsx/r0
tsy/r0

�
, (A5)

which can be moved to the right side as an additional

forcing term.
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This system [(A2)] for k 5 1, . . . , N has a block tri-

diagonal matrix for the 2N velocities (uk, yk). The block

Gaussian elimination procedure algorithmically follows

the standard Gaussian elimination (e.g., section 8.5 in

Richtmeyer and Morton 1967), where the system is first

brought into the upper (or lower) two-diagonal form,

starting from one side (as the boundary equations al-

ready exist as relations between just two neighboring

unknowns), followed by the back substitution sweep.

The only difference between the block and the standard

procedure is that now instead of scalar variables, we

operate with two vectors and 2 3 2 matrices, and di-

vision by the middle coefficient during forward sweep is

replaced with inversion of the 23 2 matrix performed at

every index k.

Given u? and h, w is calculated from the continuity

relation as usual in ROMS.

Obviously, the TTW system for s5 ›zu? in (1)–(4) is

fully equivalent to the continuous system solved here for

u?, and discrete solutions can be (andwere) obtained for
either system.
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