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A B S T R A C T

Taking advantage of alternative expressions for potential vorticity (PV) in divergence forms, we derive balances
between volume integral of PV and boundary conditions, that are then applied to practical computations of PV:

• We propose a new method for diagnosing the Ertel potential vorticity from model output, that preserves the
balances;

• We show how the expression of PV can be derived in general coordinate systems. This is here emphasised
with isopycnic coordinates by generalising the PV expression to the general Navier-Stokes equations;

• We propose a generalised derivation for the Haynes-McIntyre impermeability theorem, which highlights the
role of the bottom boundary condition choice (e.g. no-slip vs free-slip) and mixing near the bottom boundary
for the volume integral of PV.
The implications of balances between volume integral of PV and boundary conditions are then analysed for

specific processes at various scales:

• At large scale, we show how an integral involving surface observations (derived from satellite observations)
is linked to the integral of PV within a layer (between two isopycnals). This surface integral can be calculated
for models and observations and can be used for validation;

• At mesoscale or sub-mesoscale, we analyse the relationship between net PV anomalies and net surface
density anomalies for idealised vortices and 2D fronts. This can help determining vortex or jet structures for
idealised studies or empirical methodologies;

• We also confirm and integrate previous results on the modification of PV within a bottom boundary layer
into a single diagnostic taking into account the effect of density and velocity modifications by diabatic
processes along the topography and diapycnal mixing within the boundary layer.

1. Introduction

It is well known that Ertel's potential vorticity (PV, see Ertel, 1942)
is an important quantity when studying the circulation at all scales in
geophysical fluids: the conservation property of PV -in adiabatic evo-
lution- and the inversion principle (the geostrophic velocity field can be
inferred from the PV field and boundary conditions) are key principles
to interpret the ocean dynamics (see Hoskins et al., 1985; McWilliams,
2006, and section 2 for more details). Conservation and inversion of PV
are the basis of the quasigeostrophic (QG) model (Pedlosky, 1987) that
has been successfully used in pioneering studies aiming at under-
standing and modelling the ocean circulation from basin gyres (Rhines
and Young, 1982a,b; Luyten et al., 1983; Holland et al., 1984; Rhines,
1986; Talley, 1988; Marshall and Nurser, 1992) to current instabilities

(Charney and Stern, 1962), geophysical turbulence (McWilliams, 1984)
and mesoscale dynamics (McWilliams and Flierl, 1979; Sutyrin and
Flierl, 1994).

In the QG framework, PV is related to the streamfunction by a linear
elliptic differential operator (Pedlosky, 1987; Cushman-Roisin and
Beckers, 2011), which has several important consequences. First,
boundary conditions impose important dynamical constraints too. In a
QG framework Bretherton (1966) has shown that surface or bottom
outcropping of isopycnic surfaces is dynamically similar to a shallow
layer of high PV anomaly (in practice a Dirac delta sheet), whose
strength can be related to the density anomaly. This has led to the
generalised surface quasigeostrophic (SQG) model (Held et al., 1995;
Lapeyre, 2017). Lateral boundaries can be important too for the in-
version of PV. In the QG or SQG framework, it has been shown that the
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velocity field away from a region of PV anomalies decreases slowly -as
the inverse of the distance from the region- unless PV and surface
density satisfy an integral constraint (Morel and McWilliams, 1997;
Assassi et al., 2016). In models, practical inversion of PV, with given
surface and bottom density fields, is often done considering biperiodic
domains (Lapeyre et al., 2006; Wang et al., 2013), which can lead to
discrepancies if the latter constraint is not satisfied.

Second, since the relationship between PV and the circulation is
linear at first order (QG and SQG), the balance between smoothed/
averaged fields is preserved, provided averaging is done using a linear
convolution.

Moreover, PV concept is also useful for forced dissipative dynamics.
For instance, diapycnal mixing does not change the volume integral of
PV within a layer bounded by isopycnic surfaces, which shows that PV
can only be diluted or concentrated when the layer respectively gains or
looses mass (Haynes and McIntyre, 1987, 1990). The influence of vis-
cous surface or bottom stress on the PV evolution has also been ana-
lysed theoretically (Thomas, 2005; Taylor and Ferrari, 2010;
Benthuysen and Thomas, 2012, 2013). Thus, the consequences of dia-
batic effects on the ocean dynamics can again be analysed and inter-
preted in terms of PV modification from basin scales (see for instance
Hallberg and Rhines, 1996, 2000; Czaja and Hausmann, 2009) to meso
and submesoscales (see for instance Morel and McWilliams, 2001;
Morel et al., 2006; Morel and Thomas, 2009; Rossi et al., 2010; Meunier
et al., 2010; Thomas et al., 2013; Molemaker et al., 2015; Gula et al.,
2019, 2015, 2016; Vic et al., 2015; Giordani et al., 2017).

To conclude, the ocean circulation and PV are linked and calcu-
lating PV at all scales under adiabatic or diabatic conditions is thus of
considerable interest for geophysical fluid dynamics. In QG or SQG
models, it is possible to ensure consistent balances between circulation,
PV and surface, bottom and lateral boundary conditions, from local to
averaged fields. In more complex models, PV calculation involves many
velocity and density derivatives, in particular in non-isopycnic models,
and keeping the link between averaged PV and averaged circulation
implies to find a consistent calculation of PV. If several studies have
used diagnostics involving PV, they remain rare and none have dis-
cussed the PV calculations in details, in particular to evaluate if the
relationships between PV and boundary conditions are maintained and
if averaging can be done consistently.

The Bretherton principle (Bretherton, 1966) has been recently re-
visited and extended by Schneider et al. (2003) who generalised the
concept of PV to take into account the dynamical effect of outcropping
for the general Navier Stokes equations. To do so, they used the alter-
native divergence form for the expression of PV (Vallis, 2006). In this
paper, we show how this divergence form of PV naturally leads to
general constraints on volume balances of PV and boundary conditions
(Section 3). These follow from the definition of PV and are independent
of the dynamics (adiabatic or diabatic) of the flow. In Section 4 we
show that the divergence form also makes PV computations easier and
consistent, in the sense that balances are automatically preserved when
integrating PV (a consequence of the divergence form). We then pro-
pose several frameworks, involving dynamics at different scales, to
discuss the generalised constraints between PV and surface, bottom or
lateral boundary conditions (Section 5). We summarise and discuss our
results in the concluding section. Section 2 summarises basic definitions
and properties of PV which are not new and can be skipped by readers
familiar with PV.

2. Reminders on potential vorticity

2.1. Definition of Ertel potential vorticity

Ertel (1942) defined Potential Vorticity as:

× +

= ×

PV U f

U

( ).

( ).

Ertel

a
(1)

where U is the fluid velocity field in the reference frame of the rotating
Earth, ρ is the potential density (in the ocean and entropy in the at-
mosphere), = + ×U U ra is the absolute velocity, where

= (0, , )y z is the rotation vector of the Earth, r is the position

relative to the Earth center and = = × × =f f f r(0, , ) ( ) 2y z

(see Fig. 1). Note that f is fixed but its components in some coordinate
system (spherical coordinates for instance) can vary with position. The
minus sign on the left-hand side of Eq. (1) is so that PV is generally
positive for gravitationally stable - low Rossby number flows in the
northern hemisphere.

In the ocean, the Boussinesq approximation is typically valid and
/ can be replaced by / 0, where ρ0 is a mean oceanic density. ρ0

can then be omitted from the definition of PV and we can use:

= × +

= ×

PV U f

U

( ).

( ).
Ertel

a (2)

We retain this definition for PV as it leads to clearer expressions for the
calculations we present and the formulas we obtain. This approxima-
tion is however not necessary and all the following results are valid
provided ρ is replaced by G(ρ)= log(ρ) (see Appendix B).

2.2. Properties

2.2.1. Conservation
The non-hydrostatic Navier-Stokes equations (with Boussinesq ap-

proximation) are:

+ × = +

=

=

d
dt

U f U P g F

div U
d
dt

( ) 0
0 0

(3)

where =U u v w( , , ) is the velocity field, = + U( . )d
dt t ,

=f f f(0, , )y z is the Coriolis vector, P is the pressure, ρ is the potential

Fig. 1. General Earth referential.
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density and =F F F F( , , )x y z and are terms associated with diabatic
processes for momentum and density fields.

The Lagrangian evolution of Ertel PV can be derived from Eq. (3):

= × × +d
dt

PV F U f( ). ( ).Ertel (4)

As shown by Ertel (1942), PVErtel is thus conserved in regions where
diabatic processes are negligible.

The evolution/conservation of PV following fluid particles is a
major constraint for geophysical fluid dynamics (Hoskins et al., 1985).
To study geophysical fluids, simplified forms of Eq. (3) are sought
which conserve a simplified expression for PV (White et al., 2005). This
is the case for instance for quasigeostrophic or primitive equations
(Pedlosky, 1987; Cushman-Roisin and Beckers, 2011; McWilliams,
2006). For the primitive equations, the hydrostatic approximation is
assumed and fy is neglected, PV can be written (White et al., 2005):

= + +PV v u f v u( )PE x y z z z x z y (5)

where fz is the (local) vertical component of the Coriolis vector and is
called Coriolis parameter.

The Lagrangian conservation of PVPE is more conveniently derived,
and achieved in numerical models, using density ρ instead of the geo-
potential vertical coordinate z. This has been one of the motivation for
the development of isopycnic coordinate ocean models (see for instance
Bleck et al., 1992; Hallberg, 1997). Using isopycnic coordinate, PVPE

can be written (Cushman-Roisin and Beckers, 2011):

=
+

PV
f

hPE
z

(6)

where ζ =(∂xv− ∂yu)∣ρ is the relative vorticity, now calculated using
horizontal velocity components along isopycnic surfaces and h=−∂ρz
is a measure of the local stratification. We will see below how the ex-
pression of PV can be easily derived in isopycnic coordinates for the full
Navier-Stokes equations (including terms coming from all components
of the Coriolis vector and non-hydrostatic effects).

2.2.2. Inversion
If (cyclo)geostrophy is assumed, the velocity field and stratification

can be calculated from the PV and are associated with the balanced
dynamics (Hoskins et al., 1985; Davis and Emanuel, 1991; McIntyre and
Norton, 2000; Morel and McWilliams, 2001; Herbette et al., 2003,
2005). The PV of a fluid at rest and with a horizontally homogeneous
stratification is not null. The potential vorticity anomaly (PVA) is de-
fined as the difference between total PV and a reference PV associated
with a state of rest of the entire fluid:

=PVA PV PV
rest¯

(7)

PV A is the part of the PV that is linked to the balanced dynamics and, at
first order, it corresponds to the quasigeostrophic PV (Davis and
Emanuel, 1991; McIntyre and Norton, 2000; Herbette et al., 2003).

The PV of the state at rest is given by the stratification at rest:

= = = =PV f f
f

z
f
h

. ¯
¯ ( ) ¯

rest

z z
z z¯

(8)

An important point is that in Eq. (7) PVA has to be calculated along
surfaces of constant density. This is underlined by the ∣ρ symbol in Eq.
(8), which is valid for both non-hydrostatic and primitive equations.
The stratification at rest ¯ is associated with the adiabatic rearrange-
ment of the density to get a horizontally uniform field (Holliday and
Mcintyre, 1981; Kang and Fringer, 2010) and it is generally not easy to
determine. PVA is thus often used in idealised configurations where the
fluid is at rest in some area (generally at the edge of the domain see
Sections 5.2 and 5.3 below). Alternatively, PVA can be associated with
small scale processes, superposed on a larger scale circulation. The
reference state can then be approximately determined as a spatial

average (over a distance that is much larger than the processes scales).

3. Alternative expressions for PV

3.1. Divergence form

In the following, the calculations rely on general mathematical
properties relating divergence, curl and gradient of 3D fields and in-
tegral properties of these operators, whose general forms are recalled in
Appendix A.

Previous studies have shown that Ertel PV, as defined in Eq. (2), can
be expressed in divergence form (see Schneider et al., 2003; Vallis,
2006). Trivial manipulations (explained in Appendix A, see Eq. (A.1))
lead to the following equivalent expressions for the PV in divergence
form (remember = + ×U U ra is the absolute velocity, see Fig. 1):

= ×

= ×

= ×

PV div U

div U

div U div f

( )

( ( ))

( ) ( ).

Ertel a

a

(9c)

Notice that these expressions are exact, whatever the evolution (dia-
batic or adiabatic) of PV and have been reported and/or used before, in
particular in atmospheric sciences (see Haynes and McIntyre, 1987;
Bretherton and Schar, 1993; Schneider et al., 2003; Vallis, 2006). Here
we demonstrate that they also lead to consistent and convenient prac-
tical approach to calculating and analysing PV in ocean modelling.

3.2. Implication for the integral of PV

Using Ostrogradsky-Stokes theorem (see Appendix A), the previous
divergence form of the PV simplifies the calculation of the integral of
PVErtel over a volume V. It can be calculated from the knowledge of the
density, velocity or relative vorticity fields around the surface ∂V con-
taining V. Eqs. (9) give the exact expressions:

= ×

= ×

= ×

PV dV U dS

U dS

f dS U dS

( ).

( ).

. ( ). .

V Ertel V a

V a

V V

(10c)

The previous expressions follow from the definition of PV and do not
depend on equations governing its evolution. They represent exact in-
stantaneous diagnostics of net PV within a volume and should not be
confused with the general flux form of the PV evolution equation
(Haynes and McIntyre, 1987).

4. Applications to the calculation of PV

In this section, we discuss how the divergence formulation, and its
associated integral constraints Eq. (10), yield an easier way to diagnose
PV and maintain balances between volume integral of PV and boundary
conditions (Eq. (10)).

4.1. PV diagnostics for numerical models

The diagnosis of PV from numerical model outputs is generally
cumbersome if the literal form (Eq. (2) or Eq. (5)) is chosen as it implies
numerous gradients calculated at different grid points, which then have
to be averaged. The use of the divergence form simplifies the PV cal-
culation and also preserves Eq. (10).

As they are used in the majority of ocean circulation models, we
consider a 3D C-grid, which are 3D extensions of the horizontal
Arakawa C-grid (see Fig. 2 and]Arakawa and Lamb, 1977). Using
Cartesian coordinates, we start from the divergence form of PV (9b)
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rewritten as:

= +
= + + +

PV div f
f f f

( ( ))
( ( )) ( ( )) ( ( ))

Ertel

x
x x

y
y y

z
z z (11)

where = × U and:

=
= +
=

w v
w u

v u.

x
y z

y
x z

z
x y (12)

The elementary cell for which PV is calculated has the density va-
lues at its corners (see Fig. 2). As is clear from Fig. 2, ζz values need to
be calculated at the center of lower and upper sides of the cell. It can be
calculated using the circulation along edges of the cell lower and upper
sides. An interesting property of 3D C-grid is that this is straightfor-
ward, thanks to the position of the velocity points (located at the middle
of edges parallel to the velocity component). Density is averaged over
the 4 density points located at the side corners. The same calculation is
also valid for the other sides of the cell.

As a result, the PV of the cell can easily be calculated from physical
fields within this single cell. We get:

=

= +

=

w w
y

v v
z

w w
y

u u
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v v
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u u
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and finally
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where

= + + +1/4( )x
i j k i j k i j k i j k i j k

¯
, , , , , , 1 , 1, , 1, 1 (15)

is the density calculated at the position of i j k
x
, , (see Fig. 2), and so forth

for the other components. The Coriolis components fi j k
x y z
, ,

/ / are calculated
at the location of the i j k

x y z
, ,

/ / points. Note that for the specific dis-
cretization of the 3D C-grid (see Fig. 2), the divergence form leads to a
compact expression of PV: in Eq. (14) PV is calculated using density and
velocity values from a single grid cell.

Eq. (14) has a flux form, which ensures that, given a volume V, the
integral of PV calculated over V using the accumulation of individual
cells or using Eq. (10) exactly match, thus preserving the general bal-
ances between integral of PV and boundary conditions for any volume.
Flux form PV expressions can be derived for B-grids or other grids, with
a similar property.

4.2. General PV expression in isopycnal coordinates

The integral constraints (10) may be used for an easier derivation of
the expression of PV in any coordinate systems and for the full Navier-
Stokes equations. As an example, we calculate PV using the isopycnic
coordinate ρ instead of the geopotential coordinate z (see section 4a of
Schneider et al., 2003). This is of interest as the interpretation of the PV
evolution, in particular the PV anomaly, has to be made along isopycnic
surfaces (Hoskins et al., 1985).

For the sake of simplicity, we just replace the vertical Cartesian
coordinate z by ρ and we keep the Cartesian (x,y) coordinates in the
horizontal (see Fig. 3). Other systems (for instance spherical) can be
used without much more complications. We also keep the orthogonal
Cartesian elementary vectors i j k( , , ) associated with axis (Ox,-
Oy,Oz) (see Fig. 3) to express all vectors.

In this framework, z= z(x,y,ρ) is the vertical position of isopycnic
surfaces, and to calculate PV, we will use Eq. (10b), which only requires
the evaluation of the density gradient

= + +i j kx y z , but using the (x,y,ρ) coordinates. To
do so, we use:

= =
=
=

h z
z h
z h

1/ z

x y x y z

y x y x z

, ,

, ,

The density gradient is then given by:

= +
h

z i z j k1 [ ]x y (16)

Eq. (10b) is then applied to an elementary volume bounded by two
isopycnic surfaces sketched in Fig. 3:

Fig. 2. Elementary cell, for a 3D C-grid, used for the calculation of PV. We
consider Cartesian coordinates (x,y, z) associated with indices (i,j, k).

Fig. 3. Coordinate system (x,y,ρ) and elementary volume and surfaces used to
calculate PVErtel using the isopycnic coordinate.
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= ×

= ×

PV dV U dS

U dS

( ).

[( ). ]
V Ertel V a

a V (17)

where [.]∂δV is the flux through all surfaces delimiting δV. Note that
= + +U u i v j w ka a a a remains the absolute velocity field ex-

pressed in the orthogonal Cartesian system.
Since the flux across isopycnic surfaces (ρ± δρ) is null and since the

other surfaces are simple (vertical planes of constant y or x), Eq. (17)
gives:

= ×

×

+

+

PV V U i y h

U j x h

[( ). 2 2 ]

[( ). 2 2 ]
Ertel a x x

x x

a y y
y y

(18)

Given that δV=2δx2δy 2δz=−2δx 2δy 2hδρ and

× = + +U
h

v w z u w z u z v z1 ( , , )a a a y a a x a y a x (19)

Eq. (18) gives:

=
+ +

=
+ + +

PV
v w z u w z

h
v w z u w z f f z

h

( ) ( )

( ) ( )
Ertel

x a a y y a a x

x y y x z y y

(20)

which is a generalised form of Eq. (6) with additional terms (in parti-
cular all components of the Coriolis effect). The terms (u+w∂xz)∣ρ,
(v+w∂yz)∣ρ represent the projection of the velocity field on the plane
tangent to the isopycnic surface.

This exact general result can also be derived using Eq. (2), with a
change of coordinate. But the calculations based on Eq. (10) offer a
straightforward method.

4.3. Integration of PV in a “layer”

We consider a volume V constituted of a “layer” embedded between
two isopycnic surfaces associated with densities ρ1 and ρ2, that can
outcrop at the surface or bottom (see Fig. 4). The total PV contained
within V may be deduced from Eq. (10c) and trivial calculations (taking
advantage of the fact that the boundaries ∂V of the layer are partly
delimited by isentropic/isopycnic surfaces, and some rearrangements
using Eq. (A.4)).

This leads to the following form, which depends only on physical
fields at the surface and bottom outcropping regions:

= ×

+ +

+

+ +

+

PV dV U dS

dS dS

dS f

( ).

[ ( ) ( )

( ) ].

V Ertel S S S

S s S S b

S

1 1

1 2

s b w

s b w

2 (21)

where ρs(x,y) is the density at the ocean surface and ρb(x,y) the density
along the bottom of the ocean. This form takes advantage of the ex-
pression Eq. (10c) to deal with volumes delimited by the two isopycnal
surfaces S 1 and S 2. Part of the layer boundaries are however asso-
ciated with outcropping surfaces where density varies (Ss, Sw and Sb see
Fig. 4). The first right hand side term of Eq. (21) depends on ×U
and has to be evaluated along these surfaces. For this term, depending
on the boundary condition used, it may be more convenient to switch
back to a form in like in Eq. (10a). This has to be done carefully
using Eq. (A.4) (see Appendix A). For instance we obtain for the surface
Ss:

× =U dS dxdy( ). ( )
S S s s1s s (22)

Finally, notice that the bottom surface has been divided in “Sidewalls”
and “Bottom” regions (Sw and Sb, see Fig. 4), possibly associated with
different boundary conditions. This is artificial if both surfaces are as-
sociated with the seafloor but we did make a difference for the sake of
generality. For instance in academic configurations, such as a rectan-
gular basin, boundary conditions at the walls and at the bottom can
differ.

4.4. Impermeability theorem

The impermeability theorem (Haynes and McIntyre, 1987, 1990)
states that there is no net transport of PV across isopycnic (or isen-
tropic) surfaces, whatever the evolution. As already shown by Vallis
(2006), Eq. (10b) is a straightforward demonstration of this theorem.
Indeed, across such surfaces, dS is parallel to and Eq. (10b) shows
that they do not contribute to the calculation of the PV volume integral,
whatever the evolution of the isopycnic surfaces. Thus, if there are no
outcropping regions and the isopycnic surfaces are closed, the volume
integral of Ertel PV within closed isopycnic surfaces is and remains null,
whatever the evolution. Alternatively, modification of the volume in-
tegral of PV in an isopycnic layer is only possible when isopycnic sur-
faces outcrop (Haynes and McIntyre, 1987).

This principle can be slightly extended. Considering a layer without

Fig. 4. General shape of a layer, bounded by two isopycnic surfaces S 1 and S 2,
determining a volume where we integrate PV. Outcropping may occur at the
surface (Ss) and at the bottom (Sb). As sketched in the upper plot (a) “Sidewalls”
(Sw) and “Bottom” (Sb) surfaces are sometimes distinguished in numerical
model. In this case, layers outcropping at the surface and sidewalls can have
special constraints (b), as discussed in Section 4.4.
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surface outcropping, and considering a no-slip boundary condition at
the ocean bottom ( = =U U 0

w b
), Eq. (21) gives:

=

+
+

PV dV dS

dS f

[ ( )

( ) ]. .
V Ertel S S b

S

1

1 2

b w

2 (23)

If = =U U 0
w b

, the density distribution along the bottom can only be
modified by diabatic (mixing) effects along the bottom. If the latter are
negligible, the density field along the bottom is constant, and Eq. (23)
then shows that there is no modification of the volume integral of PV.
Indeed, in this case, both terms in the right hand side of Eq. (23) are
constant. This is obvious for the first term. The second term is simply
the scalar product of f (constant) and the net S 2 surface vector. The
latter only depends on the position of the edge of the surface, defined by
the ρ2 contour along the bottom, and thus constant too (an alternative
way to demonstrate this is to transform the second term using Eq. (A.4),
see Appenix A). To conclude, with no-slip boundary conditions, the
volume integral of PV is only modified if there exists mixing of the
density near the bottom. In practice, the free-slip boundary condition is
often preferred in ocean circulation models, the implication for the
generation of PV will be discussed below (Section 5.4).

Another case of interest is when outcropping only occurs at the
surface and sidewalls (Fig. 4 b). In numerical models, sidewalls are
sometimes considered vertical and the fy component of the Coriolis
vector is also neglected, so that =f dS. 0. If no-slip boundary condi-
tions are used, many terms disappear in Eq. (21) and we then obtain:

= ×

+

PV dV U dS

f dS

( )

( )
V Ertel S

S z s1

s

s (24)

This draws attention to the potential importance of sloping boundaries
and the fy component for the volume integral of PV at basin scale. It also
shows that the surface terms in Eq. (24) are of special interest and we
further evaluate their contributions in the next section.

5. Applications to specific balances

As discussed in the introduction, there exists a strong link between
ocean circulation and the PV field, from mesoscale eddies to large scale
currents. Eq. (21) shows that there exists a balance between a volume
integral of PV and boundary conditions. Using the divergence form of
PV and the local PV calculation discussed in Section 4.1 allows to
preserve this balance. This is important for the physical interpretation
of model outputs in terms of PV.

In this section, we illustrate how the balance can be used at several
scales and for various processes in realistic or idealised configurations,
for which some terms in Eq. (21) can be easily evaluated from ob-
servations (e.g. the surface ones), simplified or neglected (e.g. for no
slip boundary conditions).

In Section 5.1 we discuss how time variations of large scale volume
integral of PV can be related to surface fields for both models and ob-
servations.

At mesoscale, surface density anomalies play a role similar to PVA
(Bretherton, 1966). In Sections 5.2 and 5.3 we show how Eq. (21) can
be applied to isolated vortices and jets. We show that the balance leads
to a precise relationship between surface density anomalies and PVA
integrals, which has to be satisfied for isolated vortices and jets.

Finally, in Section 5.4 we show how Eq. (21) can be applied to study
the modification of PV in the bottom boundary layer, underlining the
strong impact of the boundary conditions (free/no-slip).

5.1. Surface outcropping regions as indicators of the circulation of deep
layers

For some choices of boundary conditions Eq. (21) reduces to Eq.
(24). In addition, PV can be quickly modified by diabatic processes at
the surface (Thomas, 2005; Morel et al., 2006; Thomas and Ferrari,
2008; Thomas et al., 2013; Wenegrat et al., 2018). We can thus hy-
pothesise that the surface term:

= ×I f U dS[( ) ( )].surf S s s1s

dominates the time evolutions of the integral of PV within a deeper
layer, which is itself linked to modification of the circulation (Rhines
and Young, 1982a,b; Luyten et al., 1983; Holland et al., 1984; Rhines,
1986; Thomas and Rhines, 2002; Polton and Marshall, 2003; Deremble
et al., 2014). Comparing Isurf from numerical models and observations is
thus of interest.

Using =dS k dxdy (where k is the vertical elementary vector),
Isurf can be rewritten:

= ×I f U k dxdy[( ) ( )].surf S s s1s (25)

Note that the integral in Eq. (25) only requires the knowledge of
surface fields, in particular ×U k( ).s only depends on the hor-
izontal gradient of the surface density. Isurf can be calculated directly for
numerical models. For observations, satellite observations (possibly
complemented by in situ surface drifter observations) provide good
estimates of the surface circulation over most of the ocean down to
scales of order 25 km(see for instance Sudre and Morrow, 2008;
Abernathey and Marshall, 2013; Rio et al., 2014). To do so, the surface
current is split into a geostrophic component and a component induced
by the wind stress:

= +U U Us geo (26)

The geostrophic component Ugeo and the associated relative vorticity
can be calculated from the knowledge of the sea surface height (SSH)
observed by satellite altimetry:

= ×U g
f

k SSHgeo
z (27)

The wind induced surface current can be evaluated from satellite
scatterometer observations and using the wind induced Ekman spiral
which gives (see Cushman-Roisin and Beckers, 2011):

=U
f

w

z

/4

(28)

where ν is the turbulent eddy viscosity and

= C W Ww
a

o
D

/4 /4

(29)

whereW
/4
is the surface wind but whose orientation has been rotated

by − π/4, ρa/ρo is the ratio of the air to ocean density and CD ≃ 3.10−3

is the turbulent transfer parameter. As a result, the surface term con-
tributing to the calculation of the observed PV within a layer (Eq. (25))
can be written:

= × +

×

I f g
f

k SSH
C W W

f

k dxdy

( ) [( )

].

surf S s z
z

a D

o z

s

1

/4

s

(30)
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and can be calculated from the observed sea surface density (calculated
using SSS and SST from SMOS, Aquarius and microwave satellite ob-
servations), SSH and surface wind (all fields generally available over
most of the ocean at 1/4° resolution). We believe the comparison of Isurf
from numerical models (Eq. (25)) and from observations (Eq. (30)) can
provide an interesting new diagnostic for the validation of global or
basin scale numerical models.

5.2. Constraints for coherent isolated vortices

Most observed eddies in the ocean are isolated1 (Chelton et al.,
2011). In QG and SQG models, for coherent isolated vortices, the vo-
lume integral of PVA and surface density field are linked (Morel and
McWilliams, 1997; Assassi et al., 2016). We here extend this balance to
Ertel PVA.

Consider a flat earth for which =f f(0, 0, )z (f-plane approxima-
tion) and an axisymmetric vortex over a flat bottom (see Fig. 5 b–d). For
the sake of simplicity, we also hypothesise that ρ is constant at the

bottom and that PV
rest¯

is spatially uniform (linear stratification at rest).
Integrating the PVA over the control volume Vo (see Fig. 5 b–d)

gives:

=

=

+ ×

PVA dV PV PV dV

f PV dV

U dV

( )

( . )

( ).

V V Ertel
rest

V

rest

V

¯

¯
o o

o

o (31)

By using that =PV f H( )/
rest

z s b
¯

, Eq. (A.1b) and the fact that the
vortex is isolated, we get:

=f PV dV f dx dy( . ) ( )
V

rest

S s s z
¯

o s

(32)

and

× = ×

=

+

=

+

U dV U dS

dx dy

O
r

dx dy

O
r

( ). ( ).

( 1 )

( )

( 1 )

V V

S s surf

S s s surf

o o

s

s

(33)

where ζsurf= ∂xv− ∂yu is the relative vorticity at the surface, s is the
surface density at rest or the surface density far from the vortex center,
and ( )s s is the surface density anomaly associated with the
vortex2.

Integration of Eq. (31) over the whole (infinite) domain shows that
PV anomalies associated with isolated vortices have to satisfy:

+ + =PVA dV f dx dy( )( ) 0
S s s surf zs (34)

This extends the integral constraints found in Assassi et al. (2016),
which is modified for strong surface vorticity (when ∣ζsurf∣ ≃ fz)3. This is
the case for submesoscale vortices (Lapeyre et al., 2006; Klein et al.,
2008; Capet et al., 2008; Roullet et al., 2012; Gula et al., 2015;
Molemaker et al., 2015; Capet et al., 2016).

Thus, for isolated vortices, a positive surface density anomaly is
accompanied with negative PVA. A positive surface density is equiva-
lent to a positive Dirac delta sheet of PVA (Bretherton, 1966). A similar
constraint holds for a negative density anomaly. Hence, the generalised
PVA structure of isolated vortices has both positive and negative values,
which implies opposite sign PV gradient and opens the possibility of

Fig. 5. Vertical density structures for axisymmetric vortices having negative (b) and positive (d) surface anomalies. Vo (dashed contour) is the volume of integration
and r is the distance form the vortex center. The background stratification at rest is indicated in panels a and c.

1 An isolated vortex has a velocity field that decreases more rapidly than 1/r,
where r is the distance from its center, and the horizontal integral of its vorticity
is null at any level.

2 In Eq. (33), the last line is obtained since =dx dy 0Ss for isolated
vortices. The O(1/r) term accounts for the integration over the bottom and
lateral boundaries (dashed contours in Fig. 5). In particular, the lateral con-
tribution scales as ∣ρH 2π r ∂zU(r)∣ ≤ O(1/r). The O(1/r) rate of decrease is
symbolic and the term simply indicates that these contributions vanish when
r⟶∞.

3 Strictly speaking, strong anticyclonic vortices, for which ζsurf< − fz, could
even reverse the sign of the deep PVA, but these structures are subject to inertial
instability and are not long lived structures.
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barotropic/baroclinic instabilities (Charney and Stern, 1962; Ripa,
1991). This has an impact on the evolution (stability and displacement)
of the vortex (see Morel and McWilliams, 1997). In idealised studies
dealing with the dynamics of isolated vortices, instability of the initial
vortex structure can spoil the analysis and it is preferential to use
specific methods, based on the inversion of stable PV structures, to
initialise isolated vortices in models (see Herbette et al., 2003).

Moreover, the constraint Eq. (34) can have implications for meth-
odologies deriving velocity fields of vortices from surface density ob-
servations. The methodologies empirically generate PVA distributions
based on large-scale PV distributions or statistical correlations between
surface density observations and PVA (Lapeyre et al., 2006; Lapeyre
and Klein, 2006; Lapeyre, 2009; Ponte et al., 2013; Wang et al., 2013;
Fresnay et al., 2018). In general, the derived PVA distributions do not
satisfy constraint 34. The consequence is that the velocity field of a
reconstructed vortex decreases slowly, which can lead to spurious cal-
culations near lateral boundaries (the methodologies often consider
periodic boundary conditions). It could be interesting to modify the
methodologies so as to satisfy Eq. (34) in the vicinity of each vortex. We
however have no clue on the spatial distribution of the PVA from the
constraint (PVA poles, crown, vertically aligned or not, vertical position
within the water column, possibly multiple poles of opposite sign, ...)
and the reconstruction of the vertical vortex PVA have thus to be done
carefully.

5.3. Constraints for jets and surface fronts

Similar constraints can be found for density fronts associated with
jet-like currents. We consider a 2D configuration with no variation in
the y direction. In 2D, Eq. (10) becomes

= ×

= ×

= ×

PV dS U n dl

U n dl

f n dl U n dl

( ).

( ).

. ( ).

S Ertel S a

S a

S S

(35)

Consider a 2D front outcropping at the surface but with a constant
density along a flat bottom (see Fig. 6). The velocity field can be written

=U x z j( , ) , where is the velocity component along the y axis.
For jet-like currents the velocity vanishes away from the front:

± =x z( , ) 0. The stratification is different on both sides of the
front and varies from z¯ ( ) to + z¯ ( ).

For this configuration, the determination of the reference PV, as-
sociated with the state at rest, is slightly more delicate, as we hy-
pothesised that both the left and right edges of the front are at rest. It
has however to be chosen at the left edge as only this side covers the
entire density range. The reference PV is thus PVrest and we then in-
tegrate PVA from x=−∞ to x= L. Again, for the sake of simplifica-
tion, we hypothesise that =f f(0, 0, )z and PVrest is spatially uniform.
Trivial manipulations yield an equation similar to Eq. (33):

=

= +

+

=

= =

=

=

=
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x L

z z z z

z H

z

z x L

0 0

0

(36)

Assuming the velocity has a jet-like structure, =x L z( , ) becomes
small enough so that the last term in Eq. (36), can be neglected. Given
the density structure discussed here (see Fig. 6), (ρ− ρ−∞)∣z=0 is po-
sitive, which shows that a negative PVA must exist below the out-
cropping region for jets (if (ζz+ fz) remains positive). Opposite sign
generalised PVA is necessarily associated with opposite sign PVA gra-
dients and to instability (Charney and Stern, 1962). Similarly to isolated
vortices, integral constraint 36 can be useful to study the instability of
surface fronts and for methods aiming at reconstructing the ocean at
mesoscale and submesoscale via an estimation of PVA within the water
column (Lapeyre et al., 2006; Ponte et al., 2013; Spall, 1995; Boss et al.,
1996; Manucharyan and Timmermans, 2013).

5.4. PV modification by bottom boundary layer processes

To study the modification of PV by -necessarily- diabatic processes,
Eq. (4) complemented with the knowledge of diabatic terms is needed
(Benthuysen and Thomas, 2012; Molemaker et al., 2015; Gula et al.,
2019, 2015). However, as shown next, integral constraints may provide
an interesting way to monitor the PV evolution within an isopycnic
layer intersecting the topography.

To do so let us consider the development of a bottom boundary layer
in 2D, with no variation in the y direction (Fig. 7).

We also consider that there is no outcropping at the surface and we
follow a control area A2D bounded by two isopycnic surfaces ρ1 and ρ2,
the topography and a vertical boundary located at a distance L∞ suf-
ficiently large so that we can consider being away from the boundary
layer and unaffected by the diabatic processes (the stratification and
velocity field are unchanged, see Fig. 7). Integration of PV over this
area gives (see Eq. (35)):

= +

×

PV dA n dl

n dl f

U n dl

dz

[ ( ) (

) ].

( ).

A Ertel S b S
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S z

1 1

2

D w

w

2 2

(37)

Given its definition, the last term in Eq. (37) does not vary.
The isopycnic levels initially intersect the topography at x=0 and

x= L, and along the topography the velocity field is jo (Fig. 7a).
After some diabatic processes, involving the viscous boundary layer and
diapycnal mixing, the velocity profile and the position of isopycnic
surfaces are modified. The positions of the intersection with the topo-
graphy are now x= L1 and x= L2 and the velocity field along the to-
pography is j (Fig. 7b). Some trivial manipulations give:
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=
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(38)

Assuming a linear variation of the density along the bottom topo-
graphy, this gives for the initial condition (see Fig. 7):

Fig. 6. Vertical density structures for a surface outcropping front. S (dashed
contour) is the surface of integration from x=−∞ to x= L.
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=PV dA f L L
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and after the diabatic modification:

= +PV dA f L L L
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where is the mean velocity along the bottom topography (where the
average is weighted by density). The net modification of the volume
integral of PV within the layer is thus:

=PV f X( ) ( )
layer z bot bot2 1

/
2 1

/1 2 1 2
(41)

where =bot o
/1 2 is the modification of the mean velocity field

along the bottom and within the layer ρ1/ρ2, and = +Xbot
L L L/ ( )

2
1 2 1 2 is

the modification of the mean x position of the layer along the bottom.
If no-slip conditions are chosen at the bottom, we recover that only

density mixing along the bottom can modify the volume integral of PV
within a layer, as already discussed in Section 4.4. The time evolution
of the volume integral of PV then only depends on the variation of the
position of the intersection of the isopycnic layer: it is negative if the
layer goes downslope (destratification case as illustrated in Fig. 7) and
positive if the layer goes upslope (restratification case). Our results are
qualitatively consistent with Benthuysen and Thomas (2012), despite
the fact that we consider a layer and not a fixed box for the volume
integral of PV.

Eq. (41) allows the possibility to consider free-slip bottom condi-
tions. Free-slip boundary conditions is the constraint usually used in
numerical models and can provide an additional modification of the
volume integral of PV if viscous effects are considered, as first imagined
by D’Asaro (1988). These viscous effects have to be added to the effect
of the modification of density studied in Benthuysen and Thomas
(2012) and discussed above. Eq. (41) shows that they superimpose
when calculating the volume integral of PV and generally act similarly.
Since our results are only diagnostics, we have to “imagine” the evo-
lution of the velocity and density fields along the boundary to evaluate
the possible PV modification. If we consider a velocity field with the

shallow region on its right ( < 0o , as depicted in Fig. 7), in the
northern hemisphere, the bottom friction develops a downslope Ekman
flux that leads to destratification and mixing induces a negative volume
integral of PV variation. We can also assume that bottom friction also
acts so as to reduce the strength of the velocity along the bottom to-

pography, so that < o . This leads to > 0bot
/1 2 and again to a

negative volume integral of PV variation. Similarly an initial current
with shallow region on its left would lead to a positive variation. This is
consistent with recent high resolution numerical results, using free-slip
boundary conditions (see Molemaker et al., 2015; Gula et al., 2015; Vic
et al., 2015; Gula et al., 2019, 2016).

However, as discussed above, the important dynamical quantity is

not necessarily the volume integral of PV. The key quantity is the PVA
within an isopycnic layer. We can diagnose the mean PVA evolution
within the boundary layer by dividing the volume integral of PV by the
volume of the followed fluid (or its area A2D and A2D

′ in 2D, see Fig. 7).
When all isopycnic surfaces remain parallel, this volume is constant (as
is the case in Benthuysen and Thomas, 2012, for instance), the mean
PVA is similar to the volume integral of PV and all previous results thus
apply to the mean PVA. However, when this is not the case, the mod-
ification of PVA is more complex and also involves PV dilution or
concentration within a layer which respectively gains or loses mass (see
Haynes and McIntyre, 1990; Morel and McWilliams, 2001). This pro-
cess is effective whenever there exists variation of turbulence along the
topography, which is the case if the bottom slope or the velocity field
vary spatially. In addition, global mass conservation requires that the
depletion of one layer coincides with the inflation of another layer.
Thus, differential diapycnal mixing in bottom boundary layers is
probably ubiquitous in realistic configurations and we can expect the
creation of both positive and negative PV anomalies.

6. Summary and discussion

6.1. Summary

In the present paper, we have used three different formulations of
Ertel PV in divergence form (see Schneider et al., 2003, and Eq. (9)) to
calculate a volume integral of PV from the knowledge of physical fields
at the surface encompassing the volume. The divergence form and as-
sociated integral constraints have then been used to enable easier cal-
culation of PV for numerical models, also preserving the balances be-
tween boundary conditions and PV. This has been explored in more
details for specific physical processes at different scales.

We have also shown that the integral constraints associated with the
divergence form lead to an easier calculation of the PV expression for
non Cartesian coordinate systems. We have in particular illustrated this
by calculating its expression in isopycnal coordinates for the general
Navier-Stokes equations.

We have then considered the volume integral of PV within a “layer”
delimited by two isopycnic surfaces and their intersections with the
ocean surface and bottom. A general integral constraint was derived
which allows to extend the PV impermeability theorem to no-slip
conditions provided there is no density mixing along the topography.
The integral constraint is then applied to several specific processes.

We first explored the link between volume integral of PV and surface
fields at basin scale and we proposed an indicator to evaluate the time
evolution of the volume integral of PV within a layer provided it outcrops
at the sea surface (Section 5.1). We proposed an indicator Isurf, depending
on physical fields at the surface, as the signature of deeper PV. The in-
dicator can be easily calculated for models and compared to observations
(it depends on physical fields that can be estimated using satellite ob-
servations: wind, sea surface height, surface temperature and salinity).

When applied to isolated vortices or jets, given the equivalence
between outcropping and surface PVA concentration (Bretherton,
1966), the balances indicate that such structures have opposite sign

Fig. 7. Vertical density structures in the deep ocean, near a
topography. We consider a 2D configuration and we follow
the evolution of a layer determined by two isopycnic levels ρ1
and ρ2 intersecting the topography. The initial velocity profile
and the positions of the isopycnic levels (a) are modified by
some diabatic processes (b).
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generalised PVA and are thus potentially unstable. It also provides a
useful constraint to estimate PVA structures from surface information as
currently attempted empirically (Lapeyre et al., 2006; Lapeyre and
Klein, 2006; Lapeyre, 2009; Ponte et al., 2013; Wang et al., 2013;
Fresnay et al., 2018).

We finally applied the integral constraints to the modification of PV
by diabatic processes within the bottom boundary layer. This provides a
diagnostic of the PV evolution within a layer based on the displacement
of its mean position and on the modification of the mean along slope
velocity along the topography. It shows in particular that free-slip
boundary conditions have potentially stronger effects on the formation
of PVA in the viscous boundary layer. Differential mixing (variation of
the density mixing along the topography) also leads to additional and
possibly opposite sign PVA along the topography.

6.2. Discussion

Concerning the calculation of PV in numerical models, the diver-
gence form approach can be adapted to any type of grid (including
unstructured grids). In numerical models, the main problem is however
Lagrangian conservation of PV during the (adiabatic) evolution of the
flow. This principally relies on numerical schemes used in the model.
There exists debates on the optimality of numerical grids (for instance
between the Charney-Phillips grid and the 3D C-grid, see Arakawa and
Moorthi, 1988; Bell, 2003) but a fair comparison relies on comparable
numerical schemes too: numerical schemes have to be optimised for the
conservation of PV for each grid (see Winther et al., 2007). When this is
established, the influence of the PV diagnostic on the conservation
property is interesting to assess too, even though this influence is ex-
pected to be marginal compared to numerical schemes.

Concerning the Isurf indicator, we hypothesised that the time evo-
lution of the integral of PV in a layer was mostly induced by the evo-
lution of the surface fields. Recent studies (Ferrari et al., 2016;
McDougall and Ferrari, 2017; de Lavergne et al., 2017; Callies and
Ferrari, 2018) have however shown that mixing is bottom intensified at
large scale and that it is associated with strong upwelling/downwelling
circulations along the bottom topography which control the abyssal
circulation overturning. According to what is discussed here in
Section 5.4, this can also modify the average PV. The signature of the
modification of the deep PV on surface and bottom boundary terms of
the PV balance (Eq. (21)) can be tested using numerical models
(Deremble et al., 2014). Eq. (14) can be used to calculate PV con-
sistently with Eq. (21).

An interesting perspective is to combine the present results with the
water mass transformation (WMT) approach (Walin, 1982; Tziperman,
1986; Speer and Tziperman, 1992). If the surface contribution to the
volume integral of PV can be exactly estimated for numerical models,
we have to rely on geostrophic and Ekman currents for observations, so
that we may miss some important ageostrophic contributions to the
surface current, in particular associated with mixing. The WMT theory
allows one to estimate the surface drift associated with mixing and heat
fluxes and correct the surface observations where needed. The im-
portance of this term for the PV balance can be assessed in models and
the WMT approach provides a way to take this effect into account in
observations.

Concerning the dynamics of isolated vortices and jets, the balances
can be easily extended to take into account variations of density along
the bottom (variations of bottom density have then to be included in
Eqs. (34) and (36)) and a variable stratification at rest (see Eq. (B.6) in
B). This implies that the PVA evaluation is also possibly influenced by
the bottom conditions, so that it may be difficult to reconstruct PVA
profiles from the knowledge of surface density anomalies alone. Our
calculations used the f-plane approximation. On the β-plane, weak
vortices are dispersed into Rossby waves and their initial isolated
nature can be rapidly lost. The results we derive here are thus of interest
mainly for coherent vortices whose PV structures is comprised of closed

PV contours. For these vortices, we can neglect the variation of the
Coriolis parameter and Rossby waves.

Concerning modification of PV in the bottom boundary layer, the
net modification of PV is also a function of time (Benthuysen and
Thomas, 2013): the velocity and stratification in the bottom boundary
layer do not reach instantaneously their equilibrium value (Benthuysen
and Thomas, 2012). Thus, the final modification of PV along a
boundary depends on the time a fluid parcel will remain in contact with
the boundary layer. A Lagrangian perspective shows that 3D effects are
important for realistic conditions: when a circulation encounters a
bottom boundary, a fluid parcel will be in contact with the boundary
layer for a limited time period which is a function of the boundary and
circulation shapes (see Fig. 8). Both frictional effects and diapycnal
mixing will modify the PV value of the fluid parcel and the strength of
the created PVA which eventually separates from the boundary.

The identified processes for PV modification in the bottom
boundary layer have physical grounds but their implementation in
numerical simulations is a delicate issue as the result also depends on
the choices of several parameters (turbulent viscosity and diffusion, but
also numerical schemes, boundary conditions and closure schemes for
momentum and tracers in the bottom boundary layer). Further studies
are needed to evaluate the respective strength of each process in nu-
merical simulations and in nature. The present results give exact di-
agnostics that can be helpful for that purpose.
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Appendix A. General mathematical properties

For the sake of application to PV, we name U , and ρ the fields used in the following equations, but the latter are exact general mathematical
results whatever the meaning of the U , and ρ fields.

First let us recall some basic properties for the divergence and curl of arbitrary fields:

× = × ×div U B U B B U( ) ( ). ( ). , (A.1a)

= +div div( ) . ( ), (A.1b)

× = × ×U U U( ) ( ) , (A.1c)

× =div U( ) 0, (A.1d)

× =( ) 0 . (A.1e)

Using =U Ua and =B in Eq. (A.1a), and = × Ua in Eq. (A.1b), Eq. (A.1) allow to derive the divergence forms of the PV (Eq. (9)).
We also use the Ostrogradsky-Stokes theorems for the integration of divergence and curl fields:

=div A dV A dS( ) .
V V (A.2)

and

× =A dS A d l( ). .
S S (A.3)

where V is a finite volume, ∂V is its external surface and dS is an elementary surface oriented outward and is perpendicular to ∂Ω, S is a surface, ∂S is
its boundary and d l is an elementary line oriented parallel to ∂S and in the trigonometric direction when S is “seen from above” (see Fig. A.9).

Finally, Eqs. (A.1) and (A.3) also give:

× = × +U dS U dS U d l( ). ( ). . .
S S S (A.4)

All these integral properties allow the derivation of Eq. (10) and its alternative forms.

Appendix B. Generalised constraints in nonuniform stratification

B.1. Generalised PV

The definition of PV (Eq. (2)) could be changed and ρ can be replaced by G(ρ) where G represents a general function. The generalised PV form is
thus:

= × +
=

PV U f G
G PV

( ). ( )
( )

Ertel gen

Ertel (B.1)

and such a change does not alter the basic properties associated with PV and discussed in the paper.
The integral of the generalised Ertel PV satisfies all results discussed above. In particular, Eq. (10) becomes:

Fig. A.9. Vector directions for the calculation of volume to surface to line integrals (Stokes theorem).
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= ×

= ×

= ×

PV dV G U dS

U G dS

G f dS U G dS

( ) ( ).

( ( )).

( ) . ( ( )).

V Ertel gen V a

V a

V V (B.2)

The integration within a layer (Eq. (21)) gives:

=

+

+

×

+

+ +

PV dV G G dS

G G dS

G G dS f

U G dS

[ ( ( ) ( ))

( ( ) ( ))

( ( ) ( )) ].

( ( )).

V Ertel gen S s

S S b

S

S S S

1

1

1 2

s

b w

s b w

2

(B.3)

B.2. Potential vorticity anomaly

For a fluid at rest, where the velocity field and vorticity are null and the stratification only depends on the vertical coordinate, the previous
generalised form gives:

=
=

PV G f
f G z

( ¯) ¯
[ ( ¯ ( )) ]

Ertel gen
rest

z z

z z (B.4)

where fz is the local vertical component of the Coriolis vector and z¯ ( ) is the reference profile of the stratification at rest. Choosing =G X X( ) ¯ ( )1 ,
where ¯ 1 is the inverse of the function z¯ ( ) (so that =G z z( ¯ ( )) ), yields =PV fErtel gen

rest
z: the reference PV is spatially uniform (f-plane approx-

imation).
Using the generalised form of PV given in Eqs. (B.1) and (B.4), we calculate the generalised PVA:

=

= × + +

PVA PV PV

U f G f( ). ( )

gen Ertel gen Ertel gen
rest

z (B.5)

Since the stratification at rest is constant, the calculation performed in Section 5.2 can be reproduced to lead to the general integral constraints
for isolated vortices in a nonuniform stratification:

+ + =PVA dV G G f dx dy( ( ) ( ))( ) 0gen S s zs (B.6)

Note that =G ¯ 1 is a monotonically increasing function, so that all the physics discussed in Section 5.2 remains qualitatively valid.
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