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Fig. 14. Evolution of the standard deviation of the patch of tracers for different initial positions (those
described in Fig. 10). The last one is for the initial position close to the saddle equilibrium point.
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APPENDIX A. EQUILIBRIUM POINTS AND STABILITY
This section is a reminder of the fixed points of the problem; it was addressed slightly differently

in [4] and in [3]. Recall the various cases for equilibria here with our notations and in our specific
cases. This is necessary to further study the vortex source evolution with unsteady circulation or
source strength.

Recall that we have the condition Γ0Ω < 0 and the formulas

θ0 = −1

2
arctan

[
Γ0 + 4πr20Ω

S0

]
, (A.1)

or

θ0 = −1

2
arctan

[
Γ0 + 4πr20Ω

S0

]
+

π

2
, (A.2)

and

r40(Ω
2 −A2) +

Γ0Ω

2π
r20 +

S2
0 + Γ2

0

16π2
= 0. (A.3)

6.1. For Ω2 = A2:

Equilibrium. Starting from Eq. (A.3) with Ω2 = A2 and Γ0Ω < 0, we have r20 = −S2
0+Γ2

0
8πΓ0Ω

> 0

and thanks to Eq. (A.1), we have

r0 =

√
S2
0 + Γ2

0

8π(−Γ0Ω)
and θ0 =

1

2
arctan

[
S2
0 − Γ2

0

2S0Γ0

]
. (A.4)

Stability. Is the equilibrium (A.4) stable? From the characteristic polynomial (3.7) of the

differential matrix χ(X) = X2 − S2
0+Γ2

0+4πr20Γ0Ω

4π2r40
, we need to determine the sign of Δ0:

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω =
S2
0 + Γ2

0

2
> 0. (A.5)

So χ has two real roots: one positive and one negative. Then the equilibrium (A.4) is a saddle
equilibrium point. We are not interested in this type of equilibrium.

6.2. For Ω2 �= A2:

From the polynomial equation (A.3) in r20:(
Ω2 −A2

)
X2 +

Γ0Ω

2π
X +

S2
0 + Γ2

0

16π2
= 0, (A.6)

we compute the discriminant

Δ =
1

4π2

[
Γ2
0Ω

2 −
(
S2
0 + Γ2

0

) (
Ω2 −A2

)]
, (A.7)

and look at the sign of

Δ′ = A2
(
S2
0 + Γ2

0

)
− S2

0Ω
2, (A.8)

Δ′ = S2
0

(
A2 − Ω2

)
+A2Γ2

0. (A.9)

We want Δ′ to be positive because we want real (positive) solutions to Eq. (A.6). This brings three
situations (we have already studied the situation Ω2 = A2):

• If A2 > Ω2, then Δ′ > 0 clearly from Eq. (A.9).

• If Ω2 > A2, then Δ′ > 0 ⇐⇒ Ω2 < A2
(
1 +

Γ2
0

S2
0

)
.

• If Ω2 = A2
(
1 +

Γ2
0

S2
0

)
, then Δ′ = 0.
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6.2.1. For A2 > Ω2:

Because A2 > Ω2, we have Δ′ > 0 without any more condition, and we have two solutions to
the polynomial equation (A.6):

X± =
Γ0Ω±

√
Δ′

4π (A2 − Ω2)
. (A.10)

Recall that we want only a nonnegative solution (r20 > 0). Because we have supposed the condition
Γ0Ω < 0, this constraint removes X−. The root X+ is a nonnegative solution if and only if√
Δ′ > −Γ0Ω > 0. This condition is valid because

(
A2 −Ω2

) (
S2
0 + Γ2

0

)
> 0 so Δ′ > Γ2

0Ω
2.

Equilibrium for X+. We have the following equilibrium point (with θ0 computed from
Eq. (A.1)):

r0 =

√
Γ0Ω+

√
Δ′

4π (A2 − Ω2)
and θ0 = −1

2
arctan

[
Γ0A

2 +Ω
√
Δ′

S0 (A2 −Ω2)

]
. (A.11)

Stability for X+. How is the equilibrium (A.11) stable? We need to know the sign of Δ0.

Proposition 1. Under all the conditions of this subsection, we have

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω > 0

and the equilibrium point (A.11) is a saddle equilibrium point.

Proof. Remember that we work under the assumption A2 > Ω2 and Γ0Ω < 0. Then put r20 in Δ0

and

Δ0 > 0 ⇐⇒
(
S2
0 + Γ2

0

) (
A2 − Ω2

)
+ Γ2

0Ω
2 > −Γ0Ω

√
Δ′

⇐⇒
[
S2
0

(
A2 −Ω2

)
+ Γ2

0A
2
]2

> Γ2
0Ω

2S2
0

(
A2 − Ω2

)
+ Γ4

0Ω
2A2

⇐⇒ S4
0

(
A2 − Ω2

)
+ S2

0Γ
2
0

(
2A2 − Ω2

)
+ Γ4

0A
2 > 0.

The right-hand side of the equivalence is true under the assumption A2 > Ω2. This concludes the
proof of the proposition. �

6.2.2. For A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
:

We also have two roots of the polynomial (A.6):

X± =
−Γ0Ω±

√
Δ′

4π (Ω2 −A2)
. (A.12)

X+ is clearly nonnegative. X− is also nonnegative because we have −Γ0Ω >
√
Δ′ > 0 (deduced

from the hypothesis). So we have two situations to analyze:

Equilibrium and stability for X+. We have the following equilibrium point (with θ0
computed from Eq. (A.1)):

r0 =

√
−Γ0Ω+

√
Δ′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 − Ω
√
Δ′

S0 (Ω2 −A2)

]
. (A.13)

How is this equilibrium (A.13) stable? We need to know the sign of Δ0.

Proposition 2. Whatever the set of parameters we choose, if they satisfy the assumptions we

made: A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0, then we have

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω < 0, (A.14)

and the equilibrium point (A.13) is a neutral equilibrium point.
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Proof. Consider Δ0 for the value r0 we have in Eq. (A.13):

Δ0 = S2
0 + Γ2

0 + Γ0Ω

(
−Γ0Ω+

√
Δ′

Ω2 −A2

)
.

So

Δ0 < 0 ⇐⇒
(
S2
0 + Γ2

0

) (
Ω2 −A2

)
− Γ2

0Ω
2 + Γ0Ω

√
Δ′ < 0

⇐⇒ S2
0

(
Ω2 −A2

)
+ Γ2

0A
2 + Γ0Ω

√
Δ′ < 0.

The right-hand side of the equivalence is true because Γ0Ω < 0 and Ω2 −A2 < A2 Γ2
0

S2
0

so

S2
0

(
Ω2 −A2

)
+ Γ2

0A
2 < 0. This concludes the proof of the proposition. �

Equilibrium and stability for X−. We have the following equilibrium point (with θ0
computed from Eq. (A.1)):

r0 =

√
−Γ0Ω−

√
Δ′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 +Ω
√
Δ′

S0 (Ω2 −A2)

]
. (A.15)

Proposition 3. For the equilibrium (A.15), Δ0 is nonnegative for every set of parameters such

that A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0. So the equilibrium (A.15) is a saddle equilibrium point.

Proof. Look at the expression of Δ0:

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω = S2
0 + Γ2

0 +
−Γ2

0Ω
2 − Γ0Ω

√
Δ′

Ω2 −A2
, (A.16)

in which the sign is the same as the sign of(
S2
0 + Γ2

0

) (
Ω2 −A2

)
− Γ2

0Ω
2 − Γ0Ω

√
Δ′ = S2

0

(
Ω2 −A2

)
− Γ2

0A
2︸ ︷︷ ︸

<0 because Ω2−A2<A2
Γ2
0

S2
0

+
(
−Γ0Ω

√
Δ′
)

︸ ︷︷ ︸
>0

. (A.17)

So we have the following equivalences:

Δ0 > 0 ⇐⇒ −Γ0Ω
√
Δ′ > Γ2

0A
2 − S2

0

(
Ω2 −A2

)
⇐⇒ Γ2

0Ω
2Δ′ >

(
Γ2
0A

2 − S2
0

(
Ω2 −A2

))2
⇐⇒ Γ2

0Ω
2S2

0

(
A2 − Ω2

)
+ Γ4

0A
2
(
Ω2 −A2

)
> −2Γ2

0A
2S2

0

(
Ω2 −A2

)
+ S4

0

(
Ω2 −A2

)2
⇐⇒ S4

0

(
Ω2 −A2

)
+ S2

0Γ
2
0

(
Ω2 − 2A2

)
− Γ4

0A
2 < 0.

We have to study the sign of a second-degree polynomial in S2
0 for which the discriminant is

δ = Γ4
0

(
Ω2 − 2A2

)2
+ 4Γ4

0A
2
(
Ω2 −A2

)
= Γ4

0Ω
4 > 0. (A.18)

The two roots are

−Γ2
0

(
Ω2 − 2A2

)
+ Γ2

0Ω
2

2 (Ω2 −A2)
=

A2Γ2
0

Ω2 −A2
> 0, (A.19)

and

−Γ2
0

(
Ω2 − 2A2

)
− Γ2

0Ω
2

2 (Ω2 −A2)
= −Γ2

0 < 0. (A.20)

Because S2
0 > 0, to have Δ0 > 0, we need S2

0 to be smaller than the largest root, but this is not an
additional constraint because

S2
0 <

A2Γ2
0

Ω2 −A2
⇐⇒

(
Ω2 −A2

)
S2
0 < A2Γ2

0
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⇐⇒ Ω2 < A2

(
1 +

Γ2
0

S2
0

)
.

So the polynomial
(
Ω2 −A2

)
X2 +Γ2

0

(
Ω2 − 2A2

)
X − Γ4

0A
2 is nonpositive for every value between

0 and
A2Γ2

0
Ω2−A2 . Because S2

0 is in this interval, we have Δ0 > 0 for every set of parameters such that

A2 < Ω2 < A2
(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0. �

6.2.3. For Ω2 = A2
(
1 +

Γ2
0

S2
0

)

In this section, we have Δ′ = 0. Then there is only one solution to Eq. (A.6):

X =
−Γ0Ω

4π (Ω2 −A2)
=

Γ2
0 + S2

0

4π (−Γ0Ω)
> 0. (A.21)

This gives the following equilibrium point:

r0 =

√
Γ2
0 + S2

0

4π (−Γ0Ω)
and θ0 =

1

2
arctan

(
S0

Γ0

)
. (A.22)

To know the type of stability, we compute Δ0:

Δ0 = S2
0 + Γ2

0 + 4πr20Γ0Ω = S2
0 + Γ2

0 + Γ0Ω
Γ2
0 + S2

0

(−Γ0Ω)
= 0. (A.23)

So we cannot conclude about the stability of the equilibrium (A.22).

APPENDIX B. MULTIPLE TIME SCALE DEVELOPMENT

The multiple time scale method is here expanded for the subharmonic case. The harmonic case
is similar.

6.1. Order ε1

We have the following system at order ε1, computed from Eqs. (4.5) and (4.8):⎧⎨
⎩ ∂t0r1 = −ar1 − b(r0θ1)

∂t0 (r0θ1) = −cr1 + a(r0θ1).
(B.1)

So {
r1 = C1,1 (t2, t3) e

iω0t0 + c.c

r0θ1 = D1,1(t2, t3)e
iω0t0 + c.c

(B.2)

with

D1,1(t2, t3) = μ1C1,1(t2, t3), (B.3)

and μ1 = −a+iω0
b .
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6.2. Order ε2

With Eqs. (4.6) and (4.9) and because ∂t1r1 = ∂t1 (r0θ1) = 0, we have the following system in
(r2, r0θ2): {

∂t0r2 = −ar2 − b(r0θ2) + f2(t0, t1, t2, t3)

∂t0 (r0θ2) = −cr2 + a(r0θ2) + g2(t0, t1, t2, t3),
(B.4)

where {
f2(t0, t1, t2, t3) =

aδr0
2 cos(2ω0t0) +

a
2r0

r21 +
a
r0

(r0θ1)
2 − b

r0
r1 (r0θ1)

g2(t0, t1, t2, t3) =
cδr0
2 cos(2ω0t0) +

3c
2r0

r21 +
b
r0

(r0θ1)
2 .

(B.5)

The system (B.4) gives:

• For r2:

∂2
t0r2 = −a (−ar2 − b (r0θ2) + f2)− b (−cr2 + a (r0θ2) + g2) + ∂t0f2

=
(
a2 + bc

)
r2 + h2(t0, t1, t2, t3). (B.6)

• For r0θ2:

∂2
t0 (r0θ2) = −c (−ar2 − b (r0θ2) + f2) + a (−cr2 + a (r0θ2) + g2) + ∂t0g2

=
(
bc+ a2

)
(r0θ2) + k2(t0, t1, t2, t3), (B.7)

where {
h2(t0, t1, t2, t3) = (−af2 − bg2 + ∂t0f2) (t0, t1, t2, t3)

k2(t0, t1, t2, t3) = (−cf2 + ag2 + ∂t0g2) (t0, t1, t2, t3).
(B.8)

• Development of f2:

f2 =
a

r0

[
3− 2c

b

]
|C1,1|2

+

[
ar0
4

+
C2
1,1

r0

(
3a

2
+

a (a+ iω0)
2

b2
+ iω0

)]
e2iω0t0 + c.c

f2 = F2,0|C1,1|2 +
[
F2,2,1 + F2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.9)

• Development of g2:

g2 =
c

r0
|C1,1|2 +

[
cr0
4

+
C2
1,1

r0

(
3c

2
+

(a+ iω0)
2

b

)]
e2iω0t0 + c.c

g2 = G2,0|C1,1|2 +
[
G2,2,1 +G2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.10)

• Development of h2:

h2 = [−aF2,0 − bG2,0] |C1,1|2 + [(−bG2,2,1 + (−a+ 2iω0)F2,2,1)

+ (−bG2,2,2 + (−a+ 2iω0)F2,2,2)C
2
1,1

]
e2iω0t0 + c.c

h2 = H2,0|C1,1|2 +
[
H2,2,1 +H2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.11)
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• Development of k2:

k2 = [−cF2,0 + aG2,0] |C1,1|2 + [(−cF2,2,1 + (a+ 2iω0)G2,2,1)

+ (−cF2,2,2 + (a+ 2iω0)G2,2,2)C
2
1,1

]
e2iω0t0 + c.c

k2 = K2,0|C1,1|2 +
[
K2,2,1 +K2,2,2C

2
1,1

]
e2iω0t0 + c.c. (B.12)

Then from Eqs. (B.6) and (B.7) we have

• The homogeneous solutions: {
r2 = C2,1e

iω0t0 + c.c

(r0θ2) = D2,1e
iω0t0 + c.c

(B.13)

• The particular solutions for the constant terms:⎧⎨
⎩
r2 =

H2,0

ω2
0
|C1,1|2

(r0θ2) =
K2,0

ω2
0
|C1,1|2

(B.14)

• The particular solutions for e2iω0t0 + c.c:⎧⎨
⎩
r2 = −H2,2,1+H2,2,2C2

1,1

3ω2
0

e2iω0t0 + c.c

(r0θ2) = −K2,2,1+K2,2,2C2
1,1

3ω2
0

e2iω0t0 + c.c.
(B.15)

So the total solution of Eqs. (B.6) and (B.7) is⎧⎨
⎩ r2 = C2,0|C1,1|2 + C2,1e

iω0t0 + c.c +
(
C2,2,1 + C2,2,2C

2
1,1

)
e2iω0t0 + c.c

(r0θ2) = D2,0|C1,1|2 +D2,1e
iω0t0 + c.c +

(
D2,2,1 +D2,2,2C

2
1,1

)
e2iω0t0 + c.c

(B.16)

with (for i = 1, 2)

C2,0 =
H2,0

ω2
0

, C2,2,i = −H2,2,i

3ω2
0

, D2,0 =
K2,0

ω2
0

, D2,2,i = −K2,2,i

3ω2
0

. (B.17)

6.3. Order ε3

With Eqs. (4.7) and (4.10), we have the following system at the order ε3:{
∂t0r3 = −ar3 − b(r0θ3) + f3(t0, t1, t2, t3)

∂t0(r0θ3) = −cr3 + a(r0θ3) + g3(t0, t1, t2, t3),
(B.18)

where f3 and g3 are the following given functions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f3 = −∂t2r1 +
ar1r2
r0

− ar31
2r20

− ar1 cos(2ω0t0)
2 − b(r2(r0θ1)+r1(r0θ2))

r0
+ ar1(r0θ1)2

r20

+2a(r0θ1)(r0θ2)
r0

+ 2b(r0θ1)3

3r20
− ar0ω0t1 sin(2ω0t0)

g3 = −∂t2(r0θ1) +
3cr1r2
r0

− 2cr31
r20

− cr1 cos(2ω0t0)− 2a(r0θ1)3

3r20
+ 2b(r0θ1)(r0θ2)

r0

−cω0t1 sin(2ω0t0).

(B.19)

The system (B.18) gives:
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• For r3:

∂2
t0r3 = −a (−ar3 − b (r0θ3) + f3)− b (−cr3 + a (r0θ3) + g3) + ∂t0f3

=
(
a2 + bc

)
r3 + h3. (B.20)

• For r0θ3:

∂2
t0 (r0θ3) = −c (−ar3 − b (r0θ3) + f3) + a (−cr3 + a (r0θ3) + g3) + ∂t0g3

=
(
bc+ a2

)
(r0θ3) + k3. (B.21)

We do not develop f3, g3, h3 and k3 as we did for the order ε2. We only introduce the following
notations: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f3 = F3,0 + F3,1e

iω0t0 + F3,2e
2iω0t0 + F3,3e

3iω0t0 + c.c

g3 = G3,0 +G3,1e
iω0t0 +G3,2e

2iω0t0 +G3,3e
3iω0t0 + c.c

h3 = H3,0 +H3,1e
iω0t0 +H3,2e

2iω0t0 +H3,3e
3iω0t0 + c.c

k3 = K3,0 +K3,1e
iω0t0 +K3,2e

2iω0t0 +K3,3e
3iω0t0 + c.c.

(B.22)

Then, if we denote by L the self-adjoint linear operator ∂2
t0 + ω2

0, we have r�1Lr3 = r�1h3 =

r�1L
�r3 = 0 = 〈r1, h3〉. But 〈einω0t0 , eipω0t0〉 = δn,p (Kronecker symbol) for n, p ∈ Z and because

r1 = C1,1e
iω0t0 + c.c, we have

〈r1, h3〉 = C1,1H3,1 + c.c = 0. (B.23)

Because H3,1 = (−a+ iω0)F3,1 − bG3,1, we deduce the amplitude equation

(−a+ iω0)F3,1 − bG3,1 = 0. (B.24)

So we only have to compute F3,1 and G3,1 from Eq. (B.19): writing{
F3,1 = −∂t2C1,1 + IC1,1 + II |C1,1|2C1,1

G3,1 =
a+iω0

b ∂t2C1,1 + IIIC1,1 + IV |C1,1|2C1,1,
(B.25)

we have:

I = −a

4
+

C2,2,1

r0
(2a− iω0) +

D2,2,1

r0

(
−b− 2a2

b
+

2aiω0

b

)
, (B.26)

II =
1

r20

[
a

(
−3

2
+ 2

a2

b2
+

c

b

)
+ 2iω0

(
a2

b2
+

c

b

)]

+
C2,0

r0
(2a+ iω0) +

D2,0

r0

(
−b− 2a2

b
− 2aiω0

b

)

+
C2,2,2

r0
(2a− iω0) +

D2,2,2

r0

(
−b− 2a2

b
+

2aiω0

b

)
, (B.27)

III = − c

2
+

3c

r0
C2,2,1 +

2D2,2,1

r0
(−a+ iω0) , (B.28)

IV = −6c

r20
− 2ac

r20b
2
(a+ iω0) +

3c

r0
(C2,0 + C2,2,2)

− 2

r0
((a+ iω0)D2,0 + (a− iω0)D2,2,2) . (B.29)

From Eq. (B.24) we obtain the amplitude equation

∂t2C1,1 = (V + iVI)C1,1 + (VII + iVIII) |C1,1|2C1,1, (B.30)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = Re

(
−(a− iω0)I + bIII

2iω0

)

VI = Im

(
−(a− iω0)I + bIII

2iω0

)

VII = Re

(
−(a− iω0)II + bIV

2iω0

)

VIII = Im

(
−(a− iω0)II + bIV

2iω0

)
.

(B.31)
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