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The physical meaning and numerical implementation of the cpp key DIAG-
NOSTICS UV, DIAGNOSTICS EK and DIAGNOSTICS VRT in CROCO
are described below.

• DIAGNOSTICS UV = outputs 3d terms from the momentum equation
in a separate file.

• DIAGNOSTICS EK = outputs vertically integrated terms from the ki-
netic energy equation in a separate file. The DIAGNOSTICS EK FULL
is optional. It impacts the computation of the terms but do not im-
pact the choice or the size of the outputted fields (see below). The key
DIAGNOSTICS EK MLD can be added to also output terms averaged
over the depth of the surface mixed-layer.

• DIAGNOSTICS VRT = outputs 2d terms from the barotropic vorticity
equation in a separate file.

• DIAGNOSTICS PV = outputs right-hand-sides of momentum and T/S
equations in 3d.

• DIAGNOSTICS DISS = same than DIAGNOSTICS PV, but outputs
are rescaled as energy and buoyancy tendencies .

• DIAGNOSTICS BARO = isolate contribution from the barotropic/baro-
clinic coupling for kinetic energy and/or momentum

• DIAGNOSTICS EDDY = outputs (time-averaged) quadratic quanti-
ties for u,v,w,b,T,S. etc.

The options need to be activated in the cppdefs.h file:

# define DIAGNOSTICS_TS

# define DIAGNOSTICS_UV

# ifdef DIAGNOSTICS_TS

# define DIAGNOSTICS_TS_ADV

# undef DIAGNOSTICS_TS_MLD

# endif

# define DIAGNOSTICS_VRT

# define DIAGNOSTICS_EK

# ifdef DIAGNOSTICS_EK

# define DIAGNOSTICS_EK_FULL

# undef DIAGNOSTICS_EK_MLD

# endif

# define DIAGNOSTICS_BARO

# define DIAGNOSTICS_PV

# define DIAGNOSTICS_DISS

# ifdef DIAGNOSTICS_DISS

# define DIAGNOSTICS_PV

# define DIAGNOSTICS_PV_FULL

# endif

# define DIAGNOSTICS_EDDY

# undef TENDENCY
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# ifdef TENDENCY

# define DIAGNOSTICS_UV

# endif

and require the following addition to the namelist (croco.in):

diagnosticsM: ldefdiaM nwrtdiaM nrpfdiaM /filename

F 0 0

sarga_diaM.nc

diagM_avg: ldefdiaM_avg ntsdiaM_avg nwrtdiaM_avg nprfdiaM_avg /filename

F 1 0 0

sarga_diaM_avg.nc

diagM_history_fields: diag_momentum (1:2)

T T

diagM_average_fields: diag_momentum_avg (1:2)

T T

diags_ek: ldefdiags_ek , nwrtdiags_ek , nrpfdiags_ek /filename

T 72 100

croco_diags_ek.nc

diags_ek_avg: ldefdiags_ek_avg ntsdiags_ek_avg nwrtdiags_ek_avg nprfdiags_ek_avg /filename

T 1 10 100

croco_diags_ek_avg.nc

diags_ek_history_fields: diags_ek

T

diags_ek_average_fields: diags_ek_avg

T

diags_vrt: ldefdiags_vrt , nwrtdiags_vrt , nrpfdiags_vrt /filename

T 72 100

croco_diags_vrt.nc

diags_vrt_avg: ldefdiags_vrt_avg ntsdiags_vrt_avg nwrtdiags_vrt_avg nprfdiags_vrt_avg /filename

T 1 72 100

croco_diags_vrt_avg.nc

diags_vrt_history_fields: diags_vrt

T

diags_vrt_average_fields: diags_vrt_avg

T

diags_pv: ldefdiags_pv , nwrtdiags_pv , nrpfdiags_pv /filename

T 4320 5

PV/gigatl1_diags_pv.nc

diags_pv_avg: ldefdiags_pv_avg ntsdiags_pv_avg nwrtdiags_pv_avg nprfdiags_pv_avg /filename

T 1 0 0

PV/gigatl1_diags_pv_avg.nc

diags_pv_history_fields: diags_pv

2*T

diags_pv_average_fields: diags_pv_avg

2*T

diags_eddy: ldefdiags_eddy , nwrtdiags_eddy , nrpfdiags_eddy /filename

F 0 5

EDDY/gigatl1_diags_eddy.nc

diags_eddy_avg: ldefdiags_eddy_avg ntsdiags_eddy_avg nwrtdiags_eddy_avg nprfdiags_eddy_avg /

filename

T 1 0 0

EDDY/gigatl1_diags_eddy_avg.nc

diags_eddy_history_fields: diags_eddy

T

diags_eddy_average_fields: diags_eddy_avg

T
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1 Momentum equation

1.1 Continuous equation

The horizontal momentum equations in the Boussinesq approximation are:

∂u

∂t
= −uj

∂u

∂xj
− w∂u

∂z
+ fv − Px

ρ0

+ Vu +Du + Su (1)

∂v

∂t︸︷︷︸
rate

= −uj
∂v

∂xj︸ ︷︷ ︸
hadv

−w∂v
∂z︸︷︷︸

vadv

− fu︸︷︷︸
cor

− Py
ρ0︸︷︷︸

Prsgrd

+ Vv︸︷︷︸
vmix

+ Dv︸︷︷︸
hmix

+ Sv︸︷︷︸
nudg

(2)

where Cartesian tensor notation with summation convention has been used
for j = 1, 2; ~u = (u, v) is the horizontal velocity vector, w is the vertical ve-

locity, f is the Coriolis parameter, P is the pressure anomaly, ~V = (Vu,Vv) =
∂
∂z

(
KMv

∂~u
∂z

)
is the vertical mixing, ~D = (Du,Dv) the horizontal diffusion, and

~S = (Su,Sv) other sources and sinks (due to restoring, nudging, boundary
conditions, etc.).

1.2 Discrete formulation

The model momentum equations computes the momentum at the time-step
n+1 [step3d uv1.F, step3d uv2.F ]:

Hn+1un+1
i = Hnuni + ∆t

∑
j

M
n+ 1

2
i,j

where ui are the horizontal components of the velocity vector (i = 1, 2),
∆t is the baroclinic time-step of the model, H the vertical grid spacing, and

M
n+ 1

2
i,j are the terms from the momentum equation (with units of velocities ×

cell height / time) corresponding to horizontal advection, vertical advection,
coriolis force, pressure gradient, vertical mixing, horizontal diffusion (implicit
and/or explicit), and various sources and sinks.

The terms are divided by Hn+1 before writing in the file such that they all
have dimensions of m s−2. Variables included in the croco diags uv.nc files
are:

• u rate, v rate = rate of change of momentum [step3d uv2.F ]

• u xadv, v xadv = advection + implicit dissipation along xi- axis [rhs3d.F ]
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• u yadv, v yadv = advection + implicit dissipation along eta- axis [rhs3d.F ]

• u vadv, v vadv = vertical advection [rhs3d.F ]

• u cor, v cor = Coriolis term + grid curvature terms (see CURVGRID)
[rhs3d.F ]

• u prsgrd, v prsgrd = Pressure gradient [prsgrd.F ]

• u hmix, v hmix = Horizontal mixing (explicit) [uv3dmix4 GP.F, uv3dmix GP.F,

uv3dmix spg.F, uv3dmix4 S.F, uv3dmix S.F ]

• u vmix, v vmix = Vertical mixing [step3d uv2.F ]

• u nudg, v nudg = Nudgind, restoring, boundary conditions, etc. [step3d uv2.F ]

• u hdiff, v hdiff = Horizontal mixing (implicit) [rhs3d.F ]; it is also in-
cluded in advective terms, this term corresponds to the diffusive part of
the advection, and is evaluated by taking the difference with a centered
scheme (C4 for UP3 and C6 for UP5). Not implemented for WENO5.

• u baro, v baro = barotropic/baroclinic coupling [step3d uv2.F ]; this is
already included in u vmix, v vmix and outputted as an additional
term if DIAGNOSTICS BARO is activated

• u fast, v fast = contribution from the fast momentum time stepping
[step3d fast.F ] [if M3FAST is activated, it includes in particular the
bottom drag part]

All variables are 3D on horizontal u- and v- grids and vertical rho-grid (N
levels).

The following pointwise budgets are closed:

u rate = u xadv + u yadv + u vadv + u Prsgrd + u cor + u vmix + u hmix
+ u nudg + u fast
v rate = v xadv + v yadv + v vadv + v Prsgrd + v cor + v vmix + v hmix
+ v nudg+ v fast
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2 Kinetic energy equation

2.1 Continuous equation

The kinetic energy equation is formed by taking the inner product of the
horizontal velocities with the momentum equations:

1

2

∂u2
i

∂t
+ uj

∂ 1
2
u2
i

∂xj
+ w

∂ 1
2
u2
i

∂z
= −ui

ρ0

∂P

∂xi
+ Viui +Diui + Siui (3)

where Cartesian tensor notation with summation convention has been used,
i = 1, 2, j = 1, 2; ui are the horizontal components of the velocity vector uj;
u3 = w is the vertical velocity.

Variables included in the croco diags ek.nc files are:

• ek rate = rate of change of depth integrated kinetic energy, ∂
∂t

∫ ζ
−h

1
2
u2
i dz

• ek hadv =
∫ ζ
−h ui

∂ 1
2
u2i

∂xi
dz

• ek vadv =
∫ ζ
−hw

∂ 1
2
u2i

∂z
dz

• ek prsgrd =
∫ ζ
−h−ui

∂P
∂xj
dz

• ek vmix =
∫ ζ
−h Viuidz

• ek hmix = explicit part of
∫ ζ
−hDiuidz

• ek hdiff = implicit part of
∫ ζ
−hDiuidz [already included in ek hadv]

• ek nudg =
∫ ζ
−h Siuidz, other sources and sinks such as nudging and

open boundary conditions

• ek vol = depth integrated kinetic energy variation due to the grid breez-
ing (∂ζ

∂t
)

• ek cor =
∫ ζ
−h(fuv − fvu)dz, i.e., zero at the continuous level, but not

formally zero in the model due to the discretization of the grid

• ek fast = contribution from the fast momentum time stepping [step3d fast.F ]

[only if M3FAST is activated, it includes in particular the bottom drag
part and has to be included in the sum]
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• ek baro [already included in ek vmix]

• ek wind [already included in ek vmix]

• ek drag [already included in ek vmix]

Such that the full closed budget is:

ek rate = ek hadv + ek vadv + ek prsgrd + ek vmix + ek hmix + ek hdiff
+ ek nudg + ek cor + ek vol

Tems ek vol and ek cor should both be negligible and are kept only for con-
sistency check. Note that the discretization of the Coriolis term does not
unsure pointwise cancelation of ek cor but should unsure area averages can-
cellation. Area average cancellation is perfect for closed boundary conditions
but there might be a residual for open boundary conditions.

2.2 Discrete formulation

The kinetic energy equation terms correspond to the momentum equation
terms multiplied by the velocity at the time-step n+ 1

2
[step3d uv2.F ]:

1

2
Hn+1(un+1

i )2 =
1

2
Hn(uni )2 + ∆t

∑
j

un+ 1
2M

n+ 1
2

i,j

The output terms are un+ 1
2M

n+ 1
2

i,j . They are vertically integrated and multi-

plied by the cell surface dmdn = 1
pmpn

, such that they correspond to volume

energy tendencies. They all have dimensions of [energy × volume / time]
(m5s−3). The exact formulation of the terms is:

• ek rate =
∑N

k=1

(
1
2
Hn+1(un+1

i )2 − 1
2
Hn(uni )2

)
/∆t

• ek hadv =
∑N

k=1 u
n+1/2
i M

n+1/2
i,hadv

• ek vadv =
∑N

k=1 u
n+1/2
i M

n+1/2
i,vadv

• ek Prsgrd =
∑N

k=1 u
n+1/2
i M

n+1/2
i,Prsgrd

• ek vmix =
∑N

k=1 u
n+1/2
i M

n+1/2
i,vmix

• ek hmix =
∑N

k=1 u
n+1/2
i M

n+1/2
i,hmix
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• ek hdiff =
∑N

k=1 u
n+1/2
i M

n+1/2
i,hdiff [already included in ek hadv]

• ek nudg =
∑N

k=1 u
n+1/2
i M

n+1/2
i,nudg

• ek vol =
∑N

k=1

(
Hn−Hn+1

2

[
Hn

Hn+1 (un)2 + 2un
∑

j

M
n+1/2
j

Hn+1

])
• ek cor =

∑N
k=1 u

n+1/2
i M

n+1/2
i,cor

• ek fast =
∑N

k=1 u
n+1/2
i M

n+1/2
i,fast

• ek baro =
∑N

k=1 u
n+1/2
i M

n+1/2
i,baro [already included in ek vmix]

• ek wind = τ si u
n+1/2
i [already included in ek vmix]

• ek drag = τ bi u
n+1/2
i [already included in ek vmix]

Spatial discretization: Momentum terms and velocities are first com-
puted on their native u- and v-grids, then energy terms are computed on the
rho-grid:

ek hadv =

∫ ζ

−h

1

2

[
u(i, j)M

n+1/2
u,hadv(i, j) + u(i+ 1, j)M

n+1/2
u,hadv(i+ 1, j)

]
dz

+

∫ ζ

−h

1

2

[
v(i, j)M

n+1/2
v,hadv(i, j) + v(i, j + 1)M

n+1/2
v,hadv(i, j + 1)

]
dz (4)

2.2.1 DIAGNOSTICS EK FULL

if DIAGNOSTICS EK FULL is defined, the terms from the momentum equa-
tions M

n+1/2
i computed during time-step n, are multiplied by un+1+un

2
. This

option has the disadvantage to require several 3d arrays during the online
computation to save the M

n+1/2
i terms from the momentum equation until

the end of the time-step (because the vertical integration requires un+1).

if DIAGNOSTICS EK FULL is NOT defined, the velocities used to multiply
the momentum terms are the velocities computed after the predictor step
un+1/2. This option has the advantage to only use 2d arrays during the
online computation as the vertical integration is performed directly, but the
balance will not be perfectly closed because un+1/2 6= un+1+un

2
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2.2.2 DIAGNOSTICS EK MLD

This adds energy terms averaged over the mixed layer depth (currently de-
fined as the KPP hbl).

2.2.3 DIAGNOSTICS PV or DIAGNOSTICS DISS

The option DIAGNOSTICS PV outputs the sum of the non-conservative
terms in 3d:

M rhs = (M vmix - M baro) + M fast + M nudg + M hmix + M hdiff

The option DIAGNOSTICS DISS outputs the same thing, but multiplies all
terms by momentum to get kinetic energy tendencies (still in 3d):

ek rhs = ek vmix - ek vmix trans - ek baro + ek fast + ek nudg + ek hmix
+ ek hdiff

The new term ek vmix trans corresponds to the transport part of the vertical
mixing term.

The term ek vmix, once vertically integrated, corresponds to the contribution
of the wind (which can be positive), the bottom drag (always negative), and
a dissipative part (which is always negative definite), as seen below:

ek vmix =

∫ ζ

−h
Viuidz

=

∫ ζ

−h
ui
∂

∂z

(
KM

∂ui
∂z

)
dz

=

[
uiKM

∂ui
∂z

]ζ
−h
−
∫ ζ

−h
KM

(
∂ui
∂z

)2

dz

= τ si u
s
i − τ bi ubi −

∫ ζ

−h
KM

(
∂ui
∂z

)2

dz (5)

However if we compute it in 3d, it is not strictly negative (even without wind)
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and a vertical transport part is included:

Viui = ui
∂

∂z

(
KM

∂ui
∂z

)
=

∂

∂z

(
uiKM

∂ui
∂z

)
−KM

(
∂ui
∂z

)2

=
∂

∂z

(
KM

1

2

∂u2
i

∂z

)
︸ ︷︷ ︸

ek vmix trans

− KM

(
∂ui
∂z

)2

︸ ︷︷ ︸
ek vmix−ek vmix trans

(6)

If DIAGNOSTICS PV FULL is activated, the term ek vmix trans is not sub-
stracted from the ek rhs, but is outputted separately (this was a temporary
fix to unsure consistency with previously computed diagnostics).

2.3 Mean and Eddy

Examples of kinetic energy budget with CROCO using these diagnostics can
be found in Gula et al. (2016), where the equation is further decomposed
into mean and eddy parts following Harrison & Robinson (1978).

The mean kinetic energy of the flow KE = 1
2
(u2 +v2) is the sum of the kinetic

energy of the mean flow, MKE = 1
2
(u2 + v2), and the eddy kinetic energy,

EKE = 1
2
(u′2 +v′2), where the overbar denotes a time average, and the prime

denotes fluctuations relative to the time average.

The mean kinetic energy equation is formed by taking the inner product
of the mean horizontal velocities with the mean terms in the momentum
equations:

ui
∂ui
∂t

+ uiuj
∂ui
∂xj

= −ui
ρ0

∂P

∂xi
+ Viui +Diui + Siui, (7)

where Cartesian tensor notation with summation convention has been used,
i = 1, 2, j = 1, 2, 3; ui are the horizontal components of the velocity vector
uj; u3 = w is the vertical velocity; p is the pressure anomaly; b = −gρ

ρ0
is

the buoyancy anomaly; Vi, Di, and Si are the vertical mixing, horizontal
diffusion, and forcing terms in the horizontal momentum equations.

We can further decompose the advective terms as:
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uiuj
∂ui
∂xj

= uiuj
∂ui
∂xj

+ uiu′j
∂u′i
∂xj

= uj
∂ 1

2
u2
i

∂xj
+ uiu′j

∂u′i
∂xj

=
∂ 1

2
uju

2
i

∂xj
+ ui

∂u′ju
′
i

∂xj

with summation convention i = 1, 2, j = 1, 2, 3; which shows that the con-
tribution of the advective term can be split into the divergence of an energy

flux corresponding to the advection of MKE by the mean flow (
∂ 1

2
uju

2
i

∂xj
), and

another term corresponding to the conversion of eddy kinetic energy to mean

kinetic energy (ui
∂u′ju

′
i

∂xj
).

In practice we can diagnose the left hand side (uiuj
∂ui
∂xj

) from the online di-

agnostics of momentum and easily compute
∂ 1

2
uju

2
i

∂xj
from the mean fields to

get the second term on the right hand side as a residual ( ui
∂u′ju

′
i

∂xj
).

We can also decompose the pressure gradient terms as:

−ui
ρ0

∂P

∂xi
= −

∂
(

1
ρ0
ujp
)

∂xj
+ wb

with summation convention i = 1, 2, j = 1, 2, 3; which shows that the con-
tribution of the pressure gradient term can be split into the divergence of an

energy flux at the boundaries of the domain volume (
∂
(

1
ρ0
ujp

)
∂xj

) and conver-

sion between potential and kinetic energy (wb).

Again, in practice it is easier to diagnose the left hand side (ui
ρ0

∂P
∂xi

) from the

online diagnostics of momentum and compute wb from the mean fields to get

the first term on the right hand side as a residual (
∂ 1
ρ0
ujp

∂xj
).
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Finally we get the equation for MKE:

ui
∂ui
∂t

+
∂
(

1
2
uju

2
i + 1

ρ0
ujp
)

∂xj︸ ︷︷ ︸
Boundary Transport

=

−ui
∂u′ju

′
i

∂xj︸ ︷︷ ︸
EKE→MKE

+ wb︸︷︷︸
MPE→MKE

+ Viui︸︷︷︸
Vertical mixing

+ Diui︸︷︷︸
Horizontal diffusion

+ Siui︸︷︷︸
sources/sinks

, (8)

.

The eddy kinetic energy equation is formed by subtracting the energy equa-
tion of the mean flow from that of the total flow:

ui
∂ui
∂t
− ui

∂ui
∂t

+ uiuj
∂ui
∂xj
− uiuj

∂ui
∂xj

= −ui
ρ0

∂P

∂xi
+
ui
ρ0

∂P

∂xi

+ Viui − Viui +Diui −Diui + Siui − Siui, (9)

Where the advective term becomes:

uiuj
∂ui
∂xj
− uiuj

∂ui
∂xj

=
∂
(

1
2
uj u′2i + 1

2
u′ju

′2
i

)
∂xj

+ u′ju
′
i

∂ui
∂xj

which shows that the contribution of the advective term can be split into the
divergence of an energy flux corresponding to the advection of EKE by the

flow (
∂( 1

2
uj u′2i + 1

2
u′ju

′2
i )

∂xj
), and another term corresponding to the conversion of

mean kinetic energy to eddy kinetic energy (u′ju
′
i
∂ui
∂xj

).

In practice we can diagnose the left hand side (uiuj
∂ui
∂xj
− uiuj

∂ui
∂xj

) exactly

from the online diagnostics of kinetic energy and momentum. The first and
third terms on the right hand side can also be recomputed using the DIAG-
NOSTICS EDDY capability (which outputs u′ju

′
i = ujui − ujui), such that

the second term on the right hand side can be computed as the residual.

And the pressure gradient term becomes:

−ui
ρ0

∂P

∂xi
+
ui
ρ0

∂P

∂xi
= w′b′ −

∂
(

1
ρ0
u′jp
′
)

∂xj
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which shows that the contribution of the pressure gradient term on EKE can
be split into the divergence of an energy flux due to pressure fluctuations

(
∂
(

1
ρ0
u′jp

′
)

∂xj
) and conversion from eddy potential to eddy kinetic energy (w′b′).

In practice we can diagnose the left hand side (−ui
ρ0

∂P
∂xi

+ ui
ρ0

∂P
∂xi

) exactly from
the online diagnostics of kinetic energy and momentum. The first term on
the right hand side can also be recomputed using the DIAGNOSTICS EDDY
capability (which outputs w′b′ = wb−wb), such that the second term on the
right hand side can be computed as the residual.

So finally the EKE equations is:

u′i
∂u′i
∂t

+
∂
(

1
2
uj u′2i + 1

2
u′ju

′2
i + 1

ρ0
u′jp
′
)

∂xj︸ ︷︷ ︸
Boundary Transport

=

−u′ju′i
∂ui
∂xj︸ ︷︷ ︸

MKE→EKE

+ w′b′︸︷︷︸
EPE→EKE

+ V ′iu′i︸︷︷︸
Vertical mixing

+ D′iu′i︸︷︷︸
Horizontal diffusion

+ S ′iu′i︸︷︷︸
sources/sinks

(10)

3 Barotropic vorticity equation

3.1 Continuous equation

The full barotropic vorticity balance equation of the flow is obtained by
integrating the momentum equations in the vertical and cross differentiating
them:

∂Ω

∂t︸︷︷︸
rate

= − ~∇.(f~̄u)︸ ︷︷ ︸
planet. vort. adv.

+
J(Pb, h)

ρ0︸ ︷︷ ︸
bot. pres. torque

+~k.~∇× ~τwind

ρ0︸ ︷︷ ︸
wind curl

−~k.~∇× ~τ bot

ρ0︸ ︷︷ ︸
bot. drag curl

+ DΣ︸︷︷︸
horiz.diffusion.

− AΣ︸︷︷︸
NL advection

(11)
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where the barotropic vorticity is defined as the vorticity of the vertically
integrated velocities1

Ω =
∂v

∂x
− ∂u

∂y

with (u, v) the (x, y) components of the horizontal flow, and the overbar
denotes a vertically integrated quantity,

u =

∫ ζ

−h
u dz,

where ζ(x, y, t) is the free-surface height and h(x, y) > 0 the depth of the

resting topography. H(i, j, t) =
∫ ζ
−h dz = ζ(i, j, t) + h(i, j) is the total depth

of the water column. Finally, the curl of non-linear advection terms can be
written as

AΣ =
∂2(vv − uu)

∂x∂y
+
∂2uv

∂x∂x
− ∂2uv

∂y∂y
,

and DΣ is the term due to the horizontal diffusion in the model implicitly
part of the advective scheme, plus eventually some explicit diffusion.

Examples of barotropic vorticity budget with CROCO using these diagnostics
and interpretations can be found in Gula et al. (2015) and Schoonover et al.
(2016).

3.2 Discrete formulation

Variables included in the croco diags vrt.nc files are:

• vrt rate = rate of change of barotropic vorticity [step3d uv2.F ]

• vrt xadv = contribution of advection + implicit dissipation along xi-
axis+ grid curvature terms (see CURVGRID) [rhs3d.F ]

• vrt hdiff = implicit dissipation along xi- and eta- axis [rhs3d.F ] [already
included in vrt xadv+ vrt yadv]

1Note that the barotropic vorticity is not identical to the vertically integrated vorticity.
The curl and the vertical integration can be interchanged at the expense of introducing
terms due to the horizontal variations of the limits of the integral. The difference Ω− ζ =
~us× ~∇ζ+ ~ub× ~∇h, where ~us and ~ub are the horizontal velocities at the surface and bottom,
respectively, can be non-negligible at places where we have both significant bottom currents
and large topography slopes.
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• vrt cor = planetary vorticity advection [rhs3d.F ]

• vrt Prsgrd = bottom Pressure torque [prsgrd.F ]

• vrt hmix = contribution of Horizontal diffusion (explicit) [uv3dmix4 GP.F,

uv3dmix GP.F, uv3dmix spg.F, uv3dmix4 S.F, uv3dmix S.F ]

• vrt vmix = contribution of Vertical mixing = vrt Wind + vrt Drag
[step3d uv2.F ]

• vrt nudg = contribution of Nudging, restoring, boundary conditions,
etc. [step3d uv2.F ]

• vrt Wind = Wind stress curl [step3d uv2.F ] [already included in vrt vmix]

• vrt Drag = Bottom drag curl [step3d uv2.F ] [already included in vrt vmix]

All variables are 2D on horizontal psi-grid. The following pointwise budget
is closed:

vrt rate = vrt xadv + vrt yadv + vrt Prsgrd + vrt cor + vrt vmix + vrt hmix
+ vrt nudg

Spatial discretization: Momentum terms are first computed and verti-
cally averaged on their native u- and v-grids, then vorticity terms are com-
puted on the psi-grid:

4 Tracer equation

4.1 Continuous equation

The Tracer equation is:

∂C

∂t︸︷︷︸
rate

= −uj
∂C

∂xj︸ ︷︷ ︸
hadv

−w∂C
∂z︸ ︷︷ ︸

vadv

+ VC︸︷︷︸
vmix

+ DC︸︷︷︸
horiz. diff.

+ SC︸︷︷︸
nudg

(12)

where Cartesian tensor notation with summation convention has been used
for j = 1, 2; ~u = (u, v) is the horizontal velocity vector, w is the vertical ve-

locity, VC = ∂
∂z

(
KC

∂ ~C
∂z

)
is the vertical mixing, DC the horizontal diffusion,
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and SC other terms in the model that can act as sources or sinks (due to
restoring, nudging, boundary conditions, etc.).

The equation for the tracer variance is:

∂ 1
2
C2

∂t︸ ︷︷ ︸
rate

= −uj
∂ 1

2
C2

∂xj︸ ︷︷ ︸
hadv

−w
∂ 1

2
C2

∂z︸ ︷︷ ︸
vadv

+CVC︸︷︷︸
vmix

+ CDC︸ ︷︷ ︸
horiz. diff.

+CSC︸︷︷︸
nudg

(13)

which we can write as:

∂C2

∂t
+ uj

∂C2

∂xj
+ w

∂C2

∂z
= 2CVC + 2CDC + 2CSC (14)

However the terms on the right are not strictly associated to a decay of tracer
variance.

4.1.1 Vertical mixing

The vertical mixing contribution can be decomposed as:

CVC = C
∂

∂z

(
KC

∂C

∂z

)
=

∂

∂z

(
KC

1

2

∂C2

∂z

)
−KC

(
∂C

∂z

)2

(15)

If vertically integrated, it corresponds to the contribution of the surface/bot-
tom forcings, and a diffusive part (which is always negative definite), as seen
below:

C vmix =

∫ ζ

−h
VCdz

=

[
1

2
KC

∂C2

∂z

]ζ
−h
−
∫ ζ

−h
KC

(
∂C

∂z

)2

dz (16)
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But to isolate the diffusive part, we need to decompose it at each time step,
to be able to write the tracer variance decay as:

∂C2

∂t
+
∂ujC

2

∂xj
+

∂

∂z

(
wC2 −KC

∂C2

∂z

)
= −2KC

(
∂C

∂z

)2

+ C(DC + SC)

4.1.2 Horizontal diffusion

The horizontal diffusive part will be a mixture of explicit and implicit diffu-
sion. In practice we only have explicit diffusivity in the sponge layers.
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